Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



Всесвітній день боротьби із запальними захворюваннями кишечника
день перший
день другий

Коморбідний ендокринологічний пацієнт

Всесвітній день боротьби із запальними захворюваннями кишечника
день перший
день другий

Коморбідний ендокринологічний пацієнт

Міжнародний ендокринологічний журнал Том 20, №2, 2024

Повернутися до номеру

Метаболічний синдром, дисомнії та мелатонін

Автори: Сергієнко В.О., Сегін В.Б., Гоцко М.Є., Сергієнко Л.М., Сергієнко О.О.
Львівський національний медичний університет імені Данила Галицького, м. Львів, Україна

Рубрики: Ендокринологія

Розділи: Довідник фахівця

Версія для друку


Резюме

Останніми роками спостерігається зацікавленість вивченням особливостей взаємозв’язків між метаболічним синдромом (МС), порушеннями сну і мелатоніном (МЕЛ). Дисомнії та інсомнії є важливими факторами ризику інсулінової резистентності, ожиріння, МС, цукрового діабету 2-го типу зі ступенем впливу, подібним до традиційних чинників. Отже, лікування дисомній є одним із ключових завдань профілактики й лікування МС. Регулювання процесів сну і циркадних ритмів за допомогою екзогенного втручання (зокрема, використання мелатонінергічних лікарських засобів), імовірно, може відігравати головну роль у профілактиці й лікуванні дисомній при МС. МЕЛ діє як потужний антиоксидант, здатний долати гематоенцефалічний бар’єр, пригнічувати оксидантний стрес, хронічне запалення і взаємодіяти з мікробіомом кишечника. Із клінічної точки зору дисбаланс МЕЛ може вказувати на «дефіцит темряви». Доведено, що нейрогормон має системні ефекти завдяки своїм механізмам дії, що має потенціал для впливу на перебіг багатьох хронічних захворювань. На сьогодні мелатонінергічні препарати отримали схвалення виключно для лікування інсомнії, корекції наслідків зміни часових поясів і депресії, що супроводжується розладами сну. Однак МЕЛ потенційно має терапевтичні властивості в лікуванні нейродегенеративних захворювань, посттравматичного стресового розладу, нервово-психічних розладів, деменції, автоімунних, алергічних захворювань. Збільшення потреби у використанні препаратів МЕЛ спонукало до пошуку безпечних, але екологічно чистих лікарських засобів. Повідомляється, що фітомелатонін може мати переваги, пов’язані з поліпшеною біодоступністю й ефективністю. Метою цього огляду є аналіз особливостей взаємозв’язків між МС, дисомніями і МЕЛ. Пошук проводився в Scopus, Science Direct (від Elsevier) і PubMed, включно з базами даних MEDLINE. Використані ключові слова «метаболічний синдром», «дисомнії», «інсомнії», «синдром обструктивного апное», «мелатонін». Для виявлення результатів дослідження, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук бібліографії публікацій.

In recent years, there has been an interest in studying the specifics of the relationships between metabolic syndrome (MetS), sleep disorders and melatonin (MEL). Dyssomnia and insomnia are important risk factors for insulin resistance, obesity, MetS, and type 2 diabetes mellitus with a degree of influence similar to traditional factors. Thus, the treatment of dyssomnia is one of the key tasks in the prevention and treatment of MetS. The regulation of sleep and circadian rhythms by exogenous intervention (in particular, the use of melatonergic drugs) is likely to play a central role in the prevention and treatment of dyssomnia in MetS. MEL acts as a powerful antioxidant that can cross the blood-brain barrier, suppress oxidative stress, chronic inflammation, and interact with the gut microbiome. From a clinical point of view, an imbalance of MEL may indicate a “darkness deficit”. It has been proven that the neurohormone has systemic effects due to its mechanisms of action, the potential to influence the course of many chronic diseases. Currently, melatonergic drugs are approved exclusively for the treatment of insomnia, jetlag, and depression accompanied by sleep disorders. However, MEL potentially has therapeutic properties in the treatment of neurodegenerative diseases, post-traumatic stress disorder, neuropsychiatric disorders, dementia, autoimmune and allergic diseases. The increasing need for the use of MEL products has prompted the search for safe but environmentally friendly medicines. It is reported that phytomelatonin may have advantages related to improved bioavailability and efficacy. The purpose of this review is to analyze the specifics of the relationship between MetS, dyssomnia, and MEL. The search was conducted in Scopus, Science Direct (from Else­vier), and PubMed, including MEDLINE databases. The keywords used were “metabolic syndrome”, “dyssomnia”, “insomnia”, “obstructive sleep apnea”, and “melatonin”. We conducted a manual search of the bibliography of publications to identify research results that were eluded during the online search.


Ключові слова

метаболічний синдром; соціальний джетлаг; дисомнії; інсомнії; синдром обструктивного апное; мелатонін; огляд літератури

metabolic syndrome; social jetlag; dyssomnia; insomnia; obstructive sleep apnea; melatonin; literature review


Для ознайомлення з повним змістом статті необхідно оформити передплату на журнал.


Список літератури

  1. Lee K.H., Cha M., Lee B.H. Neuroprotective effect of antioxi–dants in the brain. Int. J. Mol. Sci. 2020 Sep 28. 21(19). 7152. doi: 10.3390/ijms21197152.
  2. Maguire D.G., Ruddock M.W., Milanak M.E., Moore T., Cobice D., Armour C. Sleep, a governor of morbidity in PTSD: A systematic review of biological markers in PTSD-Related sleep disturbances. Nat. Sci. Sleep. 2020 Jul 31. 12. 545-562. doi: 10.2147/NSS.S260734.
  3. Cherkas A., Abrahamovych O., Golota S. et al. The correlations of glycated hemoglobin and carbohydrate metabolism parameters with heart rate variability in apparently healthy sedentary young male subjects. Redox Biology. 2015 Aug. 5. 301-307. doi: 10.1016/j.redox.2015.05.007.
  4. Wang S., Li Z., Wang X. et al. Associations between sleep duration and cardiovascular diseases: A meta-review and meta-analysis of observational and Mendelian randomization studies. Front Cardiovasc. Med. 2022 Aug 11. 9. 930000. doi: 10.3389/fcvm.2022.930000.
  5. Wong S.D., Wright K.P. Jr, Spencer R.L. et al. Development of the circadian system in early life: maternal and environmental factors. J. Physiol. Anthropol. 2022 May 16. 41(1). 22. doi: 10.1186/s40101-022-00294-0.
  6. Serhiyenko V.A., Serhiyenko L.M., Sehin V.B, Serhiyenko A.A. Pathophysiological and clinical aspects of the circadian rhythm of arterial stiffness in diabetes mellitus: A minireview. Endocr. Regul. 2022 Oct 20. 56(4). 284-294. doi: 10.2478/enr-d2022-0031.
  7. Pfeffer M., Korf H.W., Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen. Comp. Endocrinol. 2018 Mar 1. 258. 215-221. doi: 10.1016/j.ygcen.2017.05.013.
  8. Abood S.J., Abdulsahib W.K., Hussain S.A., Ismail S.H. Me–latonin potentiates the therapeutic effects of metformin in women with metabolic syndrome. Sci. Pharm. 2020 Jun 3. 88(2). 28. doi: 10.3390/scipharm88020028.
  9. Nasir N.F.M., Draman N., Zulkifli M.M., Muhamad R., Draman S. Sleep quality among patients with type 2 diabetes: A Cross-Sectional Study in the East Coast Region of Peninsular Malaysia. Int. J. Environ. Res. Public Health. 2022 Apr 25. 19(9). 5211. doi: 10.3390/ijerph19095211.
  10. Bironneau V., Goupil F., Ducluzeau P.H. et al. Association between obstructive sleep apnea severity and endothelial dysfunction in patients with type 2 diabetes. Cardiovasc. Diabetol. 2017 Mar 21. 16(1). 39. doi: 10.1186/s12933-017-0521-y.
  11. Hirshkowitz M., Whiton K., Albert S.M. et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015 Mar. 1(1). 40-43. doi: 10.1016/j.sleh.2014.12.010.
  12. Matsumoto T., Chin K. Prevalence of sleep disturbances: sleep disordered breathing, short sleep duration, and non-restorative sleep. Respir. Investig. 2019 May. 57(3). 227-237. doi: 10.1016/j.resinv.2019.01.008.
  13. Yau A., Haque M. Shiftwork association with cardiovascular diseases and cancers among healthcare workers: A literature review. Medeni Med. J. 2019. 34(4). 387-395. doi: 10.5222/MMJ.2019.54775.
  14. Smiley A., King D., Bidulescu A. The association between sleep duration and metabolic syndrome: The NHANES 2013/2014. Nutrients. 2019 Oct 26. 11(11). 2582. doi: 10.3390/nu11112582.
  15. Han H., Wang Y., Li T. et al. Sleep duration and risks of incident cardiovascular disease and mortality among people with type 2 diabetes. Diabetes Care. 2023 Jan 1. 46(1). 101-110. doi: 10.2337/dc22-1127.
  16. Chasens E.R., Imes C.C., Kariuki J.K. et al. Sleep and metabolic syndrome. Nurs. Clin. North Am. 2021 Jun. 56(2). 203-217. doi: 10.1016/j.cnur.2020.10.012.
  17. Anothaisintawee T., Lertrattananon D., Thamakaison S., Knutson K.L., Thakkinstian A., Reutrakul S. Later chronotype is associated with higher hemoglobin A1c in prediabetes patients. Chronobiol. Int. 2017. 34(3). 393-402. doi: 10.1080/07420528.2017.1279624.
  18. Cardinali D.P., Hardeland R. Inflammaging, metabolic syndrome and melatonin: A call for treatment studies. Neuroendocrinology. 2017 May 11. 104(4). 382-397. doi: 10.1159/000446543
  19. James S.M., Honn K.A., Gaddameedhi S., Van Dongen H.P.A. Shift work: disrupted circadian rhythms and sleep-implications for health and well-being. Curr. Sleep Med. Rep. 2017 Jun. 3(2). 104-112. doi: 10.1007/s40675-017-0071-6.
  20. Wong P.M., Hasler B.P., Kamarck T.W., Muldoon M.F., Manuck S.B. Social jetlag, chronotype, and cardiometabolic risk. J. Clin. Endocrinol. Metab. 2015 Dec. 100(12). 4612-4620. doi: 10.1210/jc.2015-2923.
  21. Koopman A.D.M., Rauh S.P., van ‘t Riet E. et al. The Association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: The New Ho–orn Study. J. Biol. Rhythms. 2017 Aug. 32(4). 359-368. doi: 10.1177/0748730417713572.
  22. Civelek E., Ozturk Civelek D., Akyel Y.K., Kaleli Durman D., Okyar A. Circadian dysfunction in adipose tissue: chronotherapy in metabolic diseases. Biology (Basel). 2023 Aug 2. 12(8). 1077. doi: 10.3390/biology12081077.
  23. Bae S.A., Fang M.Z., Rustgi V., Zarbl H., Androulakis I.P. At the interface of lifestyle, behavior, and circadian rhythms: metabolic implications. Front. Nutr. 2019 Aug 28. 6. 132. doi: 10.3389/fnut.2019.00132.
  24. Judd B.G., Sateia M.J. American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed, text revision (ICSD-3-TR), American Academy of Sleep Medicine, 2023. https://aasm.org/clinical-resources/international-classification-sleep-disorders. Accessed: February 6, 2024.
  25. Almoosawi S., Vingeliene S., Gachon F. et al. Chronotype: implications for epidemiologic studies on chrono-nutrition and cardiome–tabolic health. Adv. Nutr. 2019 Jan 1. 10(1). 30-42. doi: 10.1093/advances/nmy070.
  26. Syauqy A., Hsu C.Y., Rau H.H., Kurniawan A.L., Chao J.C. Association of sleep duration and insomnia symptoms with components of metabolic syndrome and inflammation in middle-aged and older adults with metabolic syndrome in Taiwan. Nutrients. 2019 Aug 9. 11(8). 1848. doi: 10.3390/nu11081848.
  27. Lin S.C., Sun C.A., You S.L. et al. The link of self-reported insomnia symptoms and sleep duration with metabolic syndrome: A Chinese Population-Based Study. Sleep. 2016 Jun 1. 39(6). 1261-1266. doi: 10.5665/sleep.5848.
  28. Akbaraly T.N., Jaussent I., Besset A. et al. Sleep complaints and metabolic syndrome in an elderly population: the Three-City Study. Am. J. Geriatr. Psychiatry. 2015 Aug. 23(8). 818-828. doi: 10.1016/j.jagp.2014.10.001.
  29. Wang Y., Jiang T., Wang X. et al. Association between insomnia and metabolic syndrome in a Chinese Han population: A cross-sectional study. Sci. Rep. 2017 Sep 7. 7(1). 10893. doi: 10.1038/s41598-017-11431-6.
  30. Costemale-Lacoste J.F., Asmar K.E., Rigal A. et al. Severe insomnia is associated with metabolic syndrome in women over 50 years with major depression treated in psychiatry settings: a METADAP report. J. Affect Disord. 2020 Mar 1. 264. 513-518. doi: 10.1016/j.jad.2019.11.084.
  31. Garbarino S., Magnavita N. Sleep problems are a strong predictor of stress-related metabolic changes in police officers. A prospective study. PLoS One. 2019 Oct 22. 14(10). e0224259. doi: 10.1371/journal.pone.0224259.
  32. Kim D.H., Kim B., Han K., Kim S.W. The relationship between metabolic syndrome and obstructive sleep apnea syndrome: a nationwide population-based study. Sci. Rep. 2021 Apr 22. 11(1). 8751. doi: 10.1038/s41598-021-88233-4.
  33. Veatch O.J., Bauer C.R., Keenan B.T. et al. Characterization of genetic and phenotypic heterogeneity of obstructive sleep apnea using electronic health records. BMC Med. Genomics. 2020 Jul 25. 13(1). 105. doi: 10.1186/s12920-020-00755-4.
  34. Jehan S., Zizi F., Pandi-Perumal S.R. et al. Obstructive sleep apnea and obesity: implications for public health. Sleep Med. Disord. 2017 Dec 12. 1(4). 00019.
  35. Kline C.E., Burke L.E., Sereika S.M. et al. Bidirectional relationships between weight change and sleep apnea in a behavioral weight loss intervention. Mayo Clin. Proc. 2018 Sep. 93(9). 1290-1298. doi: 10.1016/j.mayocp.2018.04.026.
  36. Serhiyenko V., Serhiyenko A., Segin V., Serhiyenko L. Association of arterial stiffness, N-terminal pro-brain natriuretic peptide, insulin resistance, and left ventricular diastolic dysfunction with diabetic cardiac autonomic neuropathy. Vessel Plus. 2022 Feb 17. 6. 11. doi: 10.20517/2574-1209.2021.83.
  37. Huang J.F., Chen L.D., Lin Q.C. et al. The relationship between excessive daytime sleepiness and metabolic syndrome in severe obstructive sleep apnea syndrome. Clin. Respir. J. 2016 Nov. 10(6). 714-721. doi: 10.1111/crj.12276.
  38. Kong D.L., Qin Z., Wang W., Pan Y., Kang J., Pang J. Association between obstructive sleep apnea and metabolic syndrome: a meta-analysis. Clin. Invest. Med. 2016 Oct 14. 39(5). E161-E172. doi: 10.25011/cim.v39i5.27148.
  39. Nikolaev G., Robeva R., Konakchieva R. Membrane melatonin receptors activated cell signaling in physiology and disease. Int. J. Mol. Sci. 2021 Dec 31. 23(1). 471. doi: 10.3390/ijms23010471.
  40. Minich D.M., Henning M., Darley C., Fahoum M., Schu–ler C.B., Frame J. Is melatonin the “next vitamin D”? A review of emerging science, clinical uses, safety, and dietary supplements. Nutrients. 2022 Sep 22. 14(19). 3934. doi: 10.3390/nu14193934.
  41. Meléndez-Fernández O.H., Liu J.A., Nelson R.J. Circadian rhythms disrupted by light at night and mistimed food intake alter hormonal rhythms and metabolism. Int. J. Mol. Sci. 2023 Feb 8. 24(4). 3392. doi: 10.3390/ijms24043392.
  42. Hardeland R. Taxon- and site-specific melatonin catabo–lism. Molecules. 2017 Nov 21. 22(11). 2015. doi: 10.3390/molecules22112015.
  43. Kervezee L., Kosmadopoulos A., Boivin D.B. Metabolic and cardiovascular consequences of shift work: the role of circadian disruption and sleep disturbances. Eur. J. Neurosci. 2020 Jan. 51(1). 396-412. doi: 10.1111/ejn.14216.
  44. Aykan U., Güvel M.C., Paykal G., Uluoglu C. Neuropharmacologic modulation of the melatonergic system. Explor. Neurosci. 2023 Dec 22. 2. 287-306. doi: 10.37349/en.2023.00029.
  45. Agorastos A., Nicolaides N.C., Bozikas V.P., Chrousos G.P., Pervanidou P. Multilevel interactions of stress and circadian system: implications for traumatic stress. Front. Psychiatry. 2020 Jan 28. 10. 1003. doi: 10.3389/fpsyt.2019.01003.
  46. Cecon E., Oishi A., Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 2018 Aug 17. 175(16). 3263-3280. doi: 10.1111/bph.13950.
  47. Reiter R.J., Sharma R., Rosales-Corral S. et al. Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem. Biophys. Res. Commun. 2022 May 21. 605. 70-81. doi: 10.1016/j.bbrc.2022.03.025.
  48. Liu J., Clough S.J., Hutchinson A.J., Adamah-Biassi E.B., Popovska-Gorevski M., Dubocovich M.L. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 2016 Oct 23. 56. 361-383. doi: 10.1146/annurev-pharmtox-010814-124742.
  49. Vriend J., Reiter R.J. Melatonin feedback on clock genes: a theory involving the proteasome. J. Pineal. Res. 2015 Jan. 58(1). 1-11. doi: 10.1111/jpi.12189.
  50. Ferlazzo N., Andolina G., Cannata A. et al. Is melatonin the cornucopia of the 21st Century? Antioxidants (Basel). 2020 Nov 5. 9(11). 1088. doi: 10.3390/antiox9111088.
  51. Reiter R.J., Sharma R., Chuffa L.G.A., Simko F., Dominguez-Rodriguez A. Mitochondrial melatonin: beneficial effects in protecting against heart Failure. Life (Basel). 2024 Jan 5. 14(1). 88. doi: 10.3390/life14010088.
  52. Sletten T.L., Magee M., Murray J.M. et al. Delayed Sleep on Melatonin (DelSoM) Study Group. Efficacy of melatonin with behavioural sleep-wake scheduling for delayed sleep-wake phase disorder: A double-blind, randomised clinical trial. PLoS Med. 2018 Jun 18. 15(6). e1002587. doi: 10.1371/journal.pmed.1002587.
  53. Carriedo-Diez B., Tosoratto-Venturi J.L., Cantón-Manzano C., Wanden-Berghe C., Sanz-Valero J. The effects of the exogenous melatonin on shift work sleep disorder in health personnel: A systematic review. Int. J. Environ. Res. Public Health. 2022 Aug 17. 19(16). 10199. doi: 10.3390/ijerph191610199.
  54. Ashton A., Foster R.G., Jagannath A. Photic entrainment of the circadian system. Int. J. Mol. Sci. 2022 Jan 10. 23(2). 729. doi: 10.3390/ijms23020729.
  55. Kennaway D.J. The dim light melatonin onset across ages, methodologies, and sex and its relationship with morningness/eveningness. Sleep. 2023 May 10. 46(5). zsad033. doi: 10.1093/sleep/zsad033.
  56. Cherkas A., Eckl P., Gueraud F., Abrahamovych O. et al. Helicobacter pylori in sedentary men is linked to higher heart rate, sympathetic activity, and insulin resistance but not inflammation or oxidative stress. Croat. Med. J. 2016 Apr 23. 57(2). 141-149. doi: 10.3325/cmj.2016.57.141.
  57. Janse van Rensburg D.C., Jansen van Rensburg A., Fow–ler P.M. et al. Managing travel fatigue and Jet Lag in athletes: A review and Consensus Statement. Sports Med. 2021 Oct. 51(10). 2029-2050. doi: 10.1007/s40279-021-01502-0.
  58. Irwin M.R., Opp M.R. Sleep health: reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology. 2017 Jan. 42(1). 129-155. doi: 10.1038/npp.2016.148.
  59. Haack M., Simpson N., Sethna N., Kaur S., Mullington J. Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications. Neuropsychopharmacology. 2020 Jan. 45(1). 205-216. doi: 10.1038/s41386-019-0439-z.
  60. De Nys L., Anderson K., Ofosu E.F., Ryde G.C., Connelly J., Whittaker A.C. The effects of physical activity on cortisol and sleep: A systematic review and meta-analysis. Psychoneuroendocrinology. 2022 Sep. 143. 105843. doi: 10.1016/j.psyneuen.2022.105843.
  61. Sondrup N., Termannsen A.D., Eriksen J.N. et al. Effects of sleep manipulation on markers of insulin sensitivity: A systematic review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 2022 Apr. 62. 101594. doi: 10.1016/j.smrv.2022.101594.
  62. Rahman H.H., Niemann D., Yusuf K.K. Association of urinary arsenic and sleep disorder in the US population: NHANES 2015–2016. Environ. Sci. Pollut. Res. Int. 2022 Jan. 29(4). 5496-5504. doi: 10.1007/s11356-021-16085-6.
  63. Brown T.M., Brainard G.C., Cajochen C. et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 2022 Mar 17. 20(3). e3001571. doi: 10.1371/journal.pbio.3001571.
  64. Birch J.N., Vanderheyden W.M. The molecular relationship between stress and insomnia. Adv. Biol. (Weinh). 2022 Nov. 6(11). e2101203. doi: 10.1002/adbi.202101203.
  65. Sejbuk M., Mirończuk-Chodakowska I., Witkowska A.M. Sleep quality: A narrative review on nutrition, stimulants, and physical activity as important factors. Nutrients. 2022 May 2. 14(9). 1912. doi: 10.3390/nu14091912.
  66. Zhang Y., Chen C., Lu L., Knutson K.L. et al. Association of magnesium intake with sleep duration and sleep quality: findings from the CARDIA study. Sleep. 2022 Apr 11. 45(4). zsab276. doi: 10.1093/sleep/zsab276.
  67. Ziegler D., Porta M., Papanas N. et al. The role of biofactors in diabetic microvascular complications. Curr. Diabetes Rev. 2022 Apr 6. 18(4). e250821195830. doi: 10.2174/1871527320666210825112240.
  68. Ikonte C.J., Mun J.G., Reider C.A., Grant R.W., Mitmes–ser S.H. Micronutrient inadequacy in short sleep: analysis of the NHANES 2005-2016. Nutrients. 2019 Oct 1. 11(10). 2335. doi: 10.3390/nu11102335.
  69. Salanitro M., Wrigley T., Ghabra H. et al. Efficacy on sleep parameters and tolerability of melatonin in individuals with sleep or mental disorders: A systematic review and meta-analysis. Neuro–sci. Biobehav. Rev. 2022 Aug. 139. 104723. doi: 10.1016/j.neubio–rev.2022.104723.
  70. Auld F., Maschauer E.L., Morrison I., Skene D.J., Riha R.L. Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med. Rev. 2017 Aug. 34. 10-22. doi: 10.1016/j.smrv.2016.06.005.
  71. Gringras P., Nir T., Breddy J., Frydman-Marom A., Findling R.L. Efficacy and safety of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry. 2017 Nov. 56(11). 948-957.e4. doi: 10.1016/j.jaac.2017.09.414.
  72. Duffy J.F., Wang W., Ronda J.M., Czeisler C.A. High dose melatonin increases sleep duration during nighttime and daytime sleep episodes in older adults. J. Pineal. Res. 2022 Aug. 73(1). e12801. doi: 10.1111/jpi.12801.
  73. Kunz D., Stotz S., Bes F. Treatment of isolated REM sleep behavior disorder using melatonin as a chronobiotic. J. Pineal Res. 2021 Sep. 71(2). e12759. doi: 10.1111/jpi.12759.
  74. Bilovol O.M., Kniazkova I.I., Bohun M.V., Mishchenko V.M. Treatment of sleep disorders in patients with hypertension and obesity. Zaporozhye Medical Journal. 2019. 21(6). 717-722. http://zmj.zsmu.edu.ua. Accessed: February 6, 2024.
  75. Andersen L.P., Gögenur I., Rosenberg J., Reiter R.J. The safety of melatonin in humans. Clin. Drug Investig. 2016 Mar. 36(3). 169-75. doi: 10.1007/s40261-015-0368-5.
  76. Kravchun P., Dunaieva I., Kravchun N. Features of using prolonged-release melatonin in patients with type 2 diabetes. International Journal of Endocrinology (Ukraine). 2023. 19(2). 143-148. https://doi.org/10.22141/2224-0721.19.2.2023.1260
  77. Kaplan K.A., Elsea S.H., Potocki L. Management of sleep disturbances associated with Smith-Magenis Syndrome. CNS Drugs. 2020 Jul. 34(7). 723-730. doi: 10.1007/s40263-020-00733-5.
  78. Lavedan C., Forsberg M., Gentile A.J. Tasimelteon: a selective and unique receptor binding profile. Neuropharmacology. 2015 Apr. 91. 142-7. doi: 10.1016/j.neuropharm.2014.12.004.
  79. Erland L.A., Saxena P.K. Melatonin natural health products and supplements: presence of serotonin and significant variability of melatonin content. J. Clin. Sleep Med. 2017 Feb 15. 13(2). 275-281. doi: 10.5664/jcsm.6462.
  80. Kukula-Koch W., Szwajgier D., Gaweł-Bęben K., Strzępek-Gomółka M., Głowniak K., Meissner H.O. Is phytomelatonin complex better than synthetic melatonin? The assessment of the antiradical and anti-inflammatory properties. Molecules. 2021 Oct 8. 26(19). 6087. doi: 10.3390/molecules26196087.

Повернутися до номеру