Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «» Том 17, №4, 2024

Вернуться к номеру

Рекомендації Європейського товариства кардіологів ESC 2024 з лікування підвищеного артеріального тиску та гіпертензії

Авторы: Розроблено робочою групою з лікування підвищеного артеріального тиску та гіпертензії Європейського товариства кардіологів (ESC) і схвалено Європейським товариством ендокринологів (ESE) та Європейською організацією інсульту (ESO).
Автори/члени робочої групи*: John William McEvoy (Chairperson) (Ireland), Cian P. McCarthy (Task Force Co-ordinator) (United States of America), Rosa Maria Bruno (Task Force Co-ordinator) (France), Sofie Brouwers (Belgium), Michelle D. Canavan (Ireland), Claudio Ceconi (Italy), Ruxandra Maria Christodorescu (Romania), Stella S. Daskalopoulou (Canada), Charles J. Ferro (United Kingdom), Eva Gerdts (Norway), Henner Hanssen (Switzerland), Julie Harris (United Kingdom), Lucas Lauder (Switzerland/Germany), Richard J. McManus (United Kingdom), Gerard J. Molloy (Ireland), Kazem Rahimi (United Kingdom), Vera Regitz-Zagrosek (Germany), Gian Paolo Rossi (Italy), Else Charlotte Sandset (Norway), Bart Scheenaerts (Belgium), Jan A. Staessen (Belgium), Izabella Uchmanowicz (Poland), Maurizio Volterrani (Italy), Rhian M. Touyz (Chairperson) (Canada) і група науковців Європейського товариства кардіологів Рецензенти: Ana Abreu (CPG Review Co-ordinator) (Portugal), Michael Hecht Olsen (CPG Review Co-ordinator) (Denmark), Marco Ambrosetti (Italy), Emmanuel Androulakis (United Kingdom), Lia Evi Bang (Denmark), Jesper Nørgaard Bech (Denmark), Michael A. Borger (Germany), Pierre Boutouyrie (France), Luís Bronze (Portugal), Sergio Buccheri (Sweden), Regina Dalmau (Spain), Maria Carmen De Pablo Zarzosa (Spain), Christian Delles (United Kingdom), Maria Manuela Fiuza (Portugal), Rahima Gabulova (Azerbaijan), Bjørn Olav Haugen (Norway), Christian Heiss (United Kingdom), Borja Ibanez (Spain), Stefan James (Sweden), Vikas Kapil (United Kingdom), Meral Kayikçioglu (Turkey), Lars Køber (Denmark), Konstantinos C. Koskinas (Switzerland), Emanuela Teresa Locati (Italy), Sharon MacDonald (United Kingdom), Anastasia S. Mihailidou (Australia), Borislava Mihaylova (United Kingdom), Richard Mindham (United Kingdom), Martin Bodtker Mortensen (Denmark), Sandor Nardai (Hungary), Lis Neubeck (United Kingdom), Jens Cosedis Nielsen (Denmark), Peter M. Nilsson (Sweden), Agnes A. Pasquet (Belgium), Mónica Mendes Pedro (Portugal), Eva Prescott (Denmark), Amina Rakisheva (Kazakhstan), Ernst Rietzschel (Belgium), Bianca Rocca (Italy), Xavier Rossello (Spain), Jean-Paul Schmid (Switzerland), Eduard Shantsila (United Kingdom), Isabella Sudano (Switzerland), Ana Teresa Timóteo (Portugal), Georgios Tsivgoulis (Greece), Andrea Ungar (Italy), Ilonca Vaartjes (Netherlands), Frank Visseren (Netherlands), Heinz Voeller (Germany), Christiaan Vrints (Belgium), Adam Witkowski (Poland), Maria-Christina Zennaro (France), and Katja Zeppenfeld (Netherlands)

Рубрики: Кардиология

Разделы: Справочник специалиста

Версия для печати


Ключевые слова

рекомендації; артеріальний тиск; артеріальна гіпертензія; пошкодження органів-мішеней, опосередковане артеріальною гіпертензією; вимірювання артеріального тиску; амбулаторне моніторування артеріального тиску; домашнє моніторування артеріального тиску; антигіпертензивні препарати; лікування гіпертонії; цілі гіпертензії; вторинна артеріальна гіпертензія; оцінка ризику серцево-судинних захворювань; профілактика серцево-судинних захворювань; резистентна артеріальна гіпертензія; скринінг на артеріальну гіпертензію

Скорочення
АГІ — індекс апное-гіпопное

АМАТ — амбулаторний моніторинг артеріального тиску 
АМКР — антагоністи мінералокортикоїдних рецепторів 
АОАТ — автоматичний офісний артеріальний тиск (вимірювання) 
АПФ — ангіотензинперетворюючий фермент

АРС — співвідношення альдостерон/ренін

АТ — артеріальний тиск
БКК — блокатор кальцієвих
каналів 
БРА — блокатор рецепторів ангіотензину 
в/в — внутрішньовенно

в/м — внутрішньом’язово

ВІЛ — вірус імунодефіциту людини 
ВООЗ — Всесвітня
організація охорони здоров’я

ВТС — відносна товщина стінки (RWT)
ГЛШ — гіпертрофія лівого шлуночка 
ГПІ — гомілково-плечовий індекс

ГПП-1 (GLP-1) — глюкагоноподібний пептид-1

ДАТ — діастолічний артеріальний тиск

ДІ — довірчий інтервал 
ДМАТ — домашнє моніторування артеріального тиску

ЕКГ — електрокардіограма

ІМТ — індекс маси тіла

ІХС — ішемічна
хвороба серця 
КК — кальцій коронарної артерії 
KT — комп’ютерна ...

Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018;39:3021–104. https://doi.org/10.1093/eurheartj/ehy339 
2. Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396:1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2 
3. Mensah GA, Fuster V, Murray CJL, Roth GA, Mensah GA, Abate YH, et al. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol 2023;82:2350–473. https://doi.org/10.1016/j.jacc.2023.11.007 
4. Johnson JL, Greaves L, Repta R. Better science with sex and gender: facilitating the use of a sex and gender-based analysis in health research. Int J Equity Health 2009;8:14. https://doi.org/10.1186/1475-9276-8-14 
5. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero J-J, DeMeo DL, et al. Sex and gender: modiers of health, disease, and medicine. Lancet 2020;396:565–82. https://doi.org/10.1016/s0140-6736(20)31561-0 
6. Camm AJ, Lüscher TF, Maurer G, Serruys PW (eds). The ESC Textbook of Cardiovascular Medicine. Oxford University Press, 2018. 
7. Mayeld SK, Foti K, Moran AE, Blakeman DE, Frieden TR. Hypertension call to action: will we respond to the call with action? Am J Hypertens 2022;35:214–6. https://doi.org/10.1093/ajh/hpab191 
8. Muntner P. The continuing challenge of low rates of blood pressure control among US adults. Am J Hypertens 2022;35:839–41. https://doi.org/10.1093/ajh/hpac075 
9. Reuter H, Jordan J. Status of hypertension in Europe. Curr Opin Cardiol 2019;34:342–9. https://doi.org/10.1097/hco.0000000000000642 
10. Brown JM, Siddiqui M, Calhoun DA, Carey RM, Hopkins PN, Williams GH, et al. The unrecognized prevalence of primary aldosteronism: a cross-sectional study. Ann Intern Med 2020;173:10–20. https://doi.org/10.7326/m20-0065 
11. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, et al. Hypertension. Nat Rev Dis Primers 2018;4:18014. https://doi.org/10.1038/nrdp.2018.14 
12. Navaneethabalakrishnan S, Smith HL, Arenaz CM, Goodlett BL, McDermott JG, Mitchell BM. Update on immune mechanisms in hypertension. Am J Hypertens 2022;35:842–51. https://doi.org/10.1093/ajh/hpac077 
13. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 1990;322:1561–6. https://doi.org/10.1056/nejm199005313222203 
14. Devereux RB, Wachtell K, Gerdts E, Boman K, Niemi-nen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 2004;292:2350–6. https://doi.org/10.1001/jama.292.19.2350 
15. de Simone G, Gottdiener JS, Chinali M, Maurer MS. Left ventricular mass predicts heart failure not related to previous myocardial infarction: the cardiovascular health study. Eur Heart J 2008;29:741–7. https://doi.org/10.1093/eurheartj/ehm605 

16. Verdecchia P, Porcellati C, Reboldi G, Gattobigio R, Borgioni C, Pearson TA, et al. Left ventricular hypertrophy as an independent predictor of acute cerebrovascular events in essential hypertension. Circulation 2001;104:2039–44. https://doi.org/10. 1161/hc4201.097944 

17. Hijazi Z, Verdecchia P, Oldgren J, Andersson U, Reboldi G, Di Pasquale G, et al. Cardiac biomarkers and left ventricular hypertrophy in relation to outcomes in patients with atrial brillation: experiences from the RELY trial. J Am Heart Assoc 2019;8: e010107. https://doi.org/10.1161/jaha.118.010107 

18. Siedlinski M, Carnevale L, Xu X, Carnevale D, Evangelou E, Cauleld MJ, et al. Genetic analyses identify brain structures related to cognitive impairment associated with elevated blood pressure. Eur Heart J 2023;44:2114–25. https://doi.org/10.1093/eurheartj/ehad101 

19. Cheung AK, Chang TI, Cushman WC, Furth SL, Hou FF, Ix JH, et al. KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney International 2021;99:S1–87. https://doi.org/10.1016/j.kint.2020.11.003 

20. Subbiah A, Bhowmik D. KDIGO recommendations on blood pressure management in chronic kidney disease. Kidney Int 2022;101:1299. https://doi.org/10.1016/j.kint. 2022.02.036 

21. Cheung CY, Biousse V, Keane PA, Schiffrin EL, Wong TY. Hypertensive eye disease. Nat Rev Dis Primers 2022;8:14. https://doi.org/10.1038/s41572-022-00342-0 

22. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular morta-lity: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360:1903–13. https://doi.org/10.1016/s0140-6736(02)11911-8 

23. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 2005;46:200–4. https://doi.org/10.1161/01.Hyp.0000168052.00426.65 

24. Gerdts E, Izzo R, Mancusi C, Losi MA, Manzi MV, Canciello G, et al. Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int J Cardiol 2018;258:257–61. https://doi.org/10.1016/j.ijcard.2017.12.086 

25. Gerdts E, Okin PM, de Simone G, Cramariuc D, Wachtell K, Boman K, et al. Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan intervention for endpoint reduction in hypertension study. Hypertension 2008;51:1109–14. https://doi.org/10.1161/hypertensionaha.107.107474 

26. Gerdts E, Wachtell K, Omvik P, Otterstad JE, Oikarinen L, Boman K, et al. Left atrial size and risk of major cardiovascular events during antihypertensive treatment: Losartan Intervention for Endpoint Reduction in Hypertension Trial. Hypertension 2007;49:311–6. https://doi.org/10.1161/01.Hyp.0000254322.96189.85 

27. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 2001;19:921–30. https://doi.org/10.1097/00004872-200105000-00013 

28. Vasan RS, Pan S, Xanthakis V, Beiser A, Larson MG, Seshadri S, et al. Arterial stiffness and long-term risk of health outcomes: the Framingham heart study. Hypertension 2022;79:1045–56. https://doi.org/10.1161/hypertensionaha.121.18776

29. Piskorz D. Hypertensive mediated organ damage and hypertension management. How to assess beneficial effects of antihypertensive treatments? High Blood Press Cardiovasc Prev 2020;27:9–17. https://doi.org/10.1007/s40292-020-00361-6 

30. Vallelonga F, Cesareo M, Menon L, Airale L, Leone D, Astarita A, et al. Cardiovascular hypertension-mediated organ damage in hypertensive urgencies and hypertensive outpatients. Front Cardiovasc Med 2022;9:889554. https://doi.org/10.3389/fcvm.2022.889554 

31. Vasan RS, Song RJ, Xanthakis V, Beiser A, DeCarli C, Mitchell GF, et al. Hypertension-mediated organ damage: pre-valence, correlates, and prognosis in the community. Hypertension 2022;79:505–15. https://doi.org/10.1161/hypertensionaha.121.18502 

32. Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet 2014;383:1899–911. https://doi.org/10.1016/s0140-6736(14)60685-1 

33. Malik R, Georgakis MK, Vujkovic M, Damrauer SM, Elliott P, Karhunen V, et al. Relationship between blood pressure and incident cardiovascular disease: linear and nonlinear Mendelian randomization analyses. Hypertension 2021;77:2004–13. https://doi.org/10.1161/hypertensionaha.120.16534 

34. Ji H, Kim A, Ebinger JE, Niiranen TJ, Claggett BL, Bairey Merz CN, et al. Sex differences in blood pressure trajectories over the life course. JAMA Cardiol 2020;5:19–26. https://doi.org/10.1001/jamacardio.2019.5306 

35. Salles GF, Reboldi G, Fagard RH, Cardoso CRL, Pierdomenico SD, Verdecchia P, et al. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: the ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension 2016;67:693–700. https://doi.org/10.1161/hypertensionaha.115.06981 

36. Verdecchia P. Prognostic value of ambulatory blood pressure: current evidence and clinical implications. Hypertension 2000;35:844–51. https://doi.org/10.1161/01.hyp. 35.3.844 

37. Mauck GW, Smith CR, Geddes LA, Bourland JD. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure — part ii. J Biomech Eng 1980;102:28–33. https://doi.org/10.1115/1.3138195 
38. Clark CE, Warren FC, Boddy K, McDonagh STJ, Moore SF, Goddard J, et al. Associations between systolic interarm differences in blood pressure and cardiovascular disease outcomes and mortality: individual participant data meta-analysis, development and validation of a prognostic algorithm: the INTERPRESS-IPD collaboration. Hypertension 2021;77:650–61. https://doi.org/10.1161/hypertensionaha.120.15997 
39. Picone DS, Deshpande RA, Schultz MG, Fonseca R, Campbell NRC, Delles C, et al. Nonvalidated home blood pressure devices dominate the online marketplace in Australia: major implications for cardiovascular risk management. Hypertension 2020;75:1593–9. https://doi.org/10.1161/hypertensionaha.120.14719 
40. Picone DS, Campbell NRC, Schutte AE, Olsen MH, Ordunez P, Whelton PK, et al. Validation status of blood pressure measuring devices sold globally. JAMA 2022;327:680–1. https://doi.org/10.1001/jama.2021.24464 
41. Stergiou GS, O’Brien E, Myers M, Palatini P, Parati G, Kollias A, et al. STRIDE BP international initiative for accurate blood pressure measurement: systematic review of published validation studies of blood pressure measuring devices. J Clin Hypertens (Greenwich) 2019;21:1616–22. https://doi.org/10.1111/jch.13710 
42. Stergiou GS, Alpert B, Mieke S, Asmar R, Atkins N, Eckert S, et al. A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/ International Organization for Standardization (AAMI/ESH/ISO) collaboration statement. Hypertension 2018;71:368–74. https://doi.org/10.1161/hypertensionaha.117.10237 
43. Stergiou GS, Mukkamala R, Avolio A, Kyriakoulis KG, Mieke S, Murray A, et al. Cuf ess blood pressure measuring devices: review and statement by the European Society of Hypertension working group on blood pressure monitoring and cardiovascular variability. J Hypertens 2022;40:1449–60. https://doi.org/10.1097/hjh.0000000000003224 
44. Stergiou GS, Avolio AP, Palatini P, Kyriakoulis KG, Schutte AE, Mieke S, et al. European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens 2023;41:2074–87. https://doi.org/10.1097/hjh.0000000000003483 
45. McAlister FA, Straus SE. Evidence based treatment of hypertension. Measurement of blood pressure: an evidence based review. BMJ 2001;322:908–11. https://doi.org/10. 1136/bmj.322.7291.908 
46. Fagius J, Karhuvaara S. Sympathetic activity and blood pressure increases with bladder distension in humans. Hypertension 1989;14:511–7. https://doi.org/10.1161/01.hyp.14.5.511 
47. Stergiou GS, Kyriakoulis KG, Stambolliu E, Destounis A, Karpettas N, Kalogeropoulos P, et al. Blood pressure measurement in atrial brillation: review and meta-analysis of evidence on accuracy and clinical relevance. J Hypertens 2019;37:2430–41. https://doi.org/10.1097/hjh.0000000000002201 
48. Clark CE, McDonagh STJ, McManus RJ. Accuracy of automated blood pressure measurements in the presence of atrial brillation: systematic review and meta-analysis. J Hum Hypertens 2019;33:352–64. https://doi.org/10.1038/s41371-018-0153-z 
49. Verberk WJ, Omboni S, Kollias A, Stergiou GS. Screening for atrial brillation with automated blood pressure measurement: research evidence and practice recommendations. Int J Cardiol 2016;203:465–73. https://doi.org/10.1016/j.ijcard.2015.10.182 
50. Manning DM, Kuchirka C, Kaminski J. Miscuffing: inappropriate blood pressure cuff application. Circulation 1983;68:763–6. https://doi.org/10.1161/01.cir.68.4.763 
51. Irving G, Holden J, Stevens R, McManus RJ. Which cuff should I use? Indirect blood pressure measurement for the diagnosis of hypertension in patients with obesity: a diagnostic accuracy review. BMJ Open 2016;6:e012429. https://doi.org/10.1136/bmjopen-2016-012429 
52. Keeley EC, Villanueva M, Chen YE, Gong Y, Handberg EM, Smith SM, et al. Attended vs unattended systolic blood pressure measurement: a randomized comparison in patients with cardiovascular disease. J Clin Hypertens (Greenwich) 2020;22:1987–92. https://doi.org/10.1111/jch.14037 
53. Myers MG, Godwin M, Dawes M, Kiss A, Tobe SW, Grant FC, et al. Conventional versus automated measurement of blood pressure in primary care patients with systolic hypertension: randomised parallel design controlled trial. BMJ 2011;342:d286. https://doi.org/10.1136/bmj.d286 
54. Clark CE. Inter-arm blood pressure difference, when is it a useful risk marker for cardiovascular events? J Hum Hypertens 2022;36:117–9. https://doi.org/10.1038/s41371-021-00629-x 
55. Clark CE, Steele AM, Taylor RS, Shore AC, Ukoumunne OC, Campbell JL. Interarm blood pressure difference in people with diabetes: measurement and vascular and mortality implications: a cohort study. Diabetes Care 2014;37:1613–20. https://doi.org/10.2337/dc13-1576 
56. Juraschek SP, Appel LJ, Mitchell CM, Mukamal KJ, Lipsitz LA, Blackford AL, et al. Comparison of supine and seated orthostatic hypotension assessments and their association with falls and orthostatic symptoms. J Am Geriatr Soc 2022;70:2310–9. https://doi.org/10.1111/jgs.17804 
57. Stergiou GS, Palatini P, Parati G, O’Brien E, Januszewicz A, Lurbe E, et al. European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J Hypertens 2021;39:1293–302. https://doi.org/10.1097/hjh. 0000000000002843 

58. Parati G, Stergiou GS, Bilo G, Kollias A, Pengo M, Ochoa J, et al. Home blood pressure monitoring: methodology, clinical relevance and practical application: a 2021 position paper by the working group on blood pressure monitoring and cardiovascular variability of the European Society of Hypertension. J Hypertens 2021;39:1742–67. https://doi.org/10.1097/hjh.0000000000002922 

59. Bradley CK, Choi E, Abdalla M, Mizuno H, Lam M, Cepeda M, et al. Use of different blood pressure thresholds to reduce the number of home blood pressure monitoring days needed for detecting hypertension. Hypertension 2023;80:2169–77. https://doi.org/10.1161/hypertensionaha.123.21118 

60. Hodgkinson JA, Lee MM, Milner S, Bradburn P, Stevens R, Hobbs FDR, et al. Accuracy of blood-pressure monitors owned by patients with hypertension (ACCU-RATE study): a cross-sectional, observational study in central England. Br J Gen Pract 2020;70:e548–54. https://doi.org/10.3399/bjgp20X710381 

61. Niiranen TJ, Asayama K, Thijs L, Johansson JK, Ohkubo T, Kikuya M, et al. Outcome-driven thresholds for home blood pressure measurement: international database of home blood pressure in relation to cardiovascular outcome. Hypertension 2013;61:27–34. https://doi.org/10.1161/hypertensionaha.111.00100 

62. Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens 2014;32:1359–66. https://doi.org/10.1097/hjh.0000000000000221 

63. Yang WY, Thijs L, Zhang ZY, Asayama K, Boggia J, Hansen TW, et al. Evidence-based proposal for the number of ambulatory readings required for assessing blood pressure level in research settings: an analysis of the IDACO database. Blood Press 2018;27: 341–50. https://doi.org/10.1080/08037051.2018.1476057 

64. Asayama K, Stolarz-Skrzypek K, Yang WY, Hansen TW, Brguljan-Hitij J, Odili AN, et al. What did we learn from the international databases on ambulatory and home blood pressure in relation to cardiovascular outcome? Hypertens Res 2023;46:934–49. https://doi.org/10.1038/s41440-023-01191-4 

65. Drawz PE, Agarwal A, Dwyer JP, Horwitz E, Lash J, Lenoir K, et al. Concordance between blood pressure in the systolic blood pressure intervention trial and in routine clinical practice. JAMA Intern Med 2020;180:1655–63. https://doi.org/10.1001/jamainternmed.2020.5028 

66. Jaeger BC, Bress AP, Bundy JD, Cheung AK, Cushman WC, Drawz PE, et al. Longer-term all-cause and cardiovascular mortality with intensive blood pressure control: a secondary analysis of a randomized clinical trial. JAMA Cardiol 2022;7:1138–46. https://doi.org/10.1001/jamacardio.2022.3345 

67. Ntineri A, Niiranen TJ, McManus RJ, Lindroos A, Jula A, Schwartz C, et al. Ambulatory versus home blood pressure monitoring: frequency and determinants of blood pressure difference and diagnostic disagreement. J Hypertens 2019;37:1974–81. https://doi.org/10.1097/hjh.0000000000002148 

68. Sheppard JP, Fletcher B, Gill P, Martin U, Roberts N, McManus RJ. Predictors of the home-clinic blood pressure difference: a systematic review and meta-analysis. Am J Hypertens 2016;29:614–25. https://doi.org/10.1093/ajh/hpv157 

69. Franklin SS, Thijs L, Li Y, Hansen TW, Boggia J, Liu Y, et al. Masked hypertension in diabetes mellitus: treatment implications for clinical practice. Hypertension 2013;61:964–71. https://doi.org/10.1161/hypertensionaha.111.00289 

70. Guirguis-Blake JM, Evans CV, Webber EM, Coppola EL, Perdue LA, Weyrich MS. Screening for hypertension in adults: updated evidence report and systematic review for the US preventive services task force. JAMA 2021;325:1657–69. https://doi.org/10. 1001/jama.2020.21669 

71. Xu W, Goldberg SI, Shubina M, Turchin A. Optimal systo-lic blood pressure target, time to intensification, and time to follow-up in treatment of hypertension: population based retrospective cohort study. BMJ 2015;350:h158. https://doi.org/10.1136/bmj.h158 

72. Antza C, Farmakis I, Doundoulakis I, Akrivos E, Stalikas N, Zafeiropoulos S, et al. Reproducibility of masked hypertension and office-based hypertension: a systematic review and meta-analysis. J Hypertens 2022;40:1053–9. https://doi.org/10.1097/hjh. 0000000000003111 

73. Uhlig K, Patel K, Ip S, Kitsios GD, Balk EM. Self-measured blood pressure monitoring in the management of hypertension: a systematic review and meta-analysis. Ann Intern Med 2013;159:185–94. https://doi.org/10.7326/0003-4819-159-3-201308060-00008 

74. Tucker KL, Sheppard JP, Stevens R, Bosworth HB, Bove A, Bray EP, et al. Self-monitoring of blood pressure in hypertension: a systematic review and individual patient data meta-analysis. PLoS Med 2017;14:e1002389. https://doi.org/10.1371/ journal.pmed.1002389 

75. McManus RJ, Mant J, Franssen M, Nickless A, Schwartz C, Hodgkinson J, et al. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial. Lancet 2018;391:949–59. https://doi.org/10.1016/s0140-6736(18)30309-x 

76. McManus RJ, Little P, Stuart B, Morton K, Raftery J, Kelly J, et al. Home and Online Management and Evaluation of Blood Pressure (HOME BP) using a digital intervention in poorly controlled hypertension: randomised controlled trial. BMJ 2021;372:m4858. https://doi.org/10.1136/bmj.m4858 

77. Li R, Liang N, Bu F, Hesketh T. The effectiveness of self-management of hypertension in adults using mobile health: systematic review and meta-analysis. JMIR Mhealth Uhealth 2020;8:e17776. https://doi.org/10.2196/17776 
78. Acharya S, Neupane G, Seals A, Madhav KC, Giustini D, Sharma S, et al. Self-measured blood pressure-guided pharmacotherapy: a systematic review and meta-analysis of US-based telemedicine trials. Hypertension 2024;81:648–57. https://doi.org/10.1161/hypertensionaha.123.22109 
79. Monahan M, Jowett S, Nickless A, Franssen M, Grant S, Greenfield S, et al. Cost-effectiveness of telemonitoring and self-monitoring of blood pressure for antihypertensive titration in primary care (TASMINH4). Hypertension 2019;73:1231–9. https://doi.org/10.1161/hypertensionaha.118.12415 
80. Wood S, Greenfield SM, Sayeed Haque M, Martin U, Gill PS, Mant J, et al. Influence of ethnicity on acceptability of method of blood pressure monitoring: a cross-sectional study in primary care. Br J Gen Pract 2016;66:e577–586. https://doi.org/10.3399/bjgp16X685717 
81. Stergiou GS, Karpettas N, Destounis A, Tzamouranis D, Nasothimiou E, Kollias A, et al. Home blood pressure monitoring alone vs. combined clinic and ambulatory measurements in following treatment-induced changes in blood pressure and organ dama-ge. Am J Hypertens 2014;27:184–92. https://doi.org/10.1093/ajh/hpt206 
82. Staessen JA, Byttebier G, Buntinx F, Celis H, O’Brien ET, Fagard R. Antihypertensive treatment based on conventional or ambulatory blood pressure measurement. A randomized controlled trial. Ambulatory blood pressure monitoring and treatment of hypertension investigators. JAMA 1997;278:1065–72. https://doi.org/10.1001/jama.1997.03550130039034 
83. McEvoy JW, Leahy N, Parati G. The apples and oranges of blood pressure variability. Hypertension 2023;80:2556–8. https://doi.org/10.1161/hypertensionaha.123.21927 
84. Ishikuro M, Obara T, Metoki H, Ohkubo T, Yamamoto M, Akutsu K, et al. Blood pressure measured in the clinic and at home during pregnancy among nulliparous and multiparous wo-men: the BOSHI study. Am J Hypertens 2013;26:141–8. https://doi.org/10.1093/ajh/hps002 
85. Bello NA, Woolley JJ, Cleary KL, Falzon L, Alpert BS, Oparil S, et al. Accuracy of blood pressure measurement devices in pregnancy: a systematic review of validation studies. Hypertension 2018;71:326–35. https://doi.org/10.1161/hypertensionaha.117.10295 
86. Tucker KL, Mort S, Yu LM, Campbell H, Rivero-Arias O, Wilson HM, et al. Effect of self-monitoring of blood pressure on diagnosis of hypertension during higher-risk pregnancy: the BUMP 1 randomized clinical trial. JAMA 2022;327:1656–65. https://doi.org/10.1001/jama.2022.4712 
87. Chappell LC, Tucker KL, Galal U, Yu L-M, Campbell H, Rivero-Arias O, et al. Effect of self-monitoring of blood pressure on blood pressure control in pregnant individuals with chronic or gestational hypertension: the BUMP 2 randomized clinical trial. JAMA 2022;327:1666–78. https://doi.org/10.1001/jama.2022.4726 
88. Tita AT, Szychowski JM, Boggess K, Dugoff L, Sibai B, Lawrence K, et al. Treatment for mild chronic hypertension du-ring pregnancy. N Engl J Med 2022;386:1781–92. https://doi.org/10.1056/NEJMoa2201295 
89. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J 2018;39:3165–241. https://doi.org/10.1093/eurheartj/ehy340 
90. Tikhonoff V, Kuznetsova T, Thijs L, Cauwenberghs N, Stolarz-Skrzypek K, Seidlerová J, et al. Ambulatory blood pressure and long-term risk for atrial brillation. Heart 2018;104:1263–70. https://doi.org/10.1136/heartjnl-2017-312488 
91. Lip GYH, Coca A, Kahan T, Boriani G, Manolis AS, Olsen MH, et al. Hypertension and cardiac arrhythmias: a consensus document from the European Heart Rhythm Association (EHRA) and ESC Council on Hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardíaca y Electro siología (SOLEACE). Europace 2017;19:891–911. https://doi.org/10.1093/europace/eux091 
92. Šelmytė-Besusparė A, Barysienė J, Petrikonytė D, Aidietis A, Marinskis G, Laucevičius A. Auscultatory versus oscillometric blood pressure measurement in patients with atrial brillation and arterial hypertension. BMC Cardiovasc Disord 2017;17:87. https://doi.org/10.1186/s12872-017-0521-6 
93. Omboni S, Ballatore T, Rizzi F, Tomassini F, Campolo L, Panzeri E, et al. 24-Hour ambulatory blood pressure telemonitoring in patients at risk of atrial brillation: results from the TEMPLAR project. Hypertens Res 2022;45:1486–95. https://doi.org/10.1038/s41440-022-00932-1 
94. Seccia TM, Letizia C, Muiesan ML, Lerco S, Cesari M, Bisogni V, et al. Atrial brillation as presenting sign of primary aldosteronism: results of the prospective appraisal on the prevalence of primary aldosteronism in hypertensive (PAPPHY) study. J Hypertens 2020;38:332–9. https://doi.org/10.1097/hjh.0000000000002250 
95. McDonagh STJ, Mejzner N, Clark CE. Prevalence of postural hypotension in primary, community and institutional care: a systematic review and meta-analysis. BMC Fam Pract 2021;22:1. https://doi.org/10.1186/s12875-020-01313-8 
96. Tran J, Hillebrand SL, Meskers CGM, Iseli RK, Maier AB. Prevalence of initial orthostatic hypotension in older adults: a systematic review and meta-analysis. Age Ageing 2021;50:1520–8. https://doi.org/10.1093/ageing/afab090 
97. Juraschek SP, Hu JR, Cluett JL, Ishak AM, Mita C, Lipsitz LA, et al. Orthostatic hypotension, hypertension treatment, and cardiovascular disease: an individual participant meta-analysis. JAMA 2023;330:1459–71. https://doi.org/10.1001/jama.2023.18497 
98. Juraschek SP, Cortez MM, Flack JM, Ghazi L, Kenny RA, Rahman M, et al. Orthostatic hypotension in adults with hypertension: a scientific statement from the American Heart Association. Hypertension 2024;81:e16–30. https://doi.org/10.1161/hyp.0000000000000236 

99. Raber I, Belanger MJ, Farahmand R, Aggarwal R, Chiu N, Al Rifai M, et al. Orthostatic hypotension in hypertensive adults: Harry Goldblatt award for early career investigators 2021. Hypertension 2022;79:2388–96. https://doi.org/10.1161/hypertensionaha.122.18557 

100. Wieling W, Kaufmann H, Claydon VE, van Wijnen VK, Harms MPM, Juraschek SP, et al. Diagnosis and treatment of orthostatic hypotension. Lancet Neurol 2022;21:735–46. https://doi.org/10.1016/s1474-4422(22)00169-7 

101. Juraschek SP, Daya N, Rawlings AM, Appel LJ, Mil-ler ER, Windham BG, et al. Association of history of dizziness and long-term adverse outcomes with early vs later orthostatic hypotension assessment times in middle-aged adults. JAMA Intern Med 2017;177:1316–23. https://doi.org/10.1001/jamainternmed.2017.2937 

102. Brignole M, Moya A, de Lange FJ, Deharo J-C, Elliott PM, Fanciulli A, et al. Practical instructions for the 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J 2018;39:e43–80. https://doi.org/10.1093/eurheartj/ehy071 

103. Rivasi G, Groppelli A, Brignole M, Soranna D, Zambon A, Bilo G, et al. Association between hypotension during 24 h ambulatory blood pressure monitoring and reflex syncope: the SynABPM 1 study. Eur Heart J 2022;43:3765–76. https://doi.org/10.1093/eurheartj/ehac347 

104. Smith TO, Sillito JA, Goh CH, Abdel-Fattah A-R, Einarsson A, Soiza RL, et al. Association between different methods of assessing blood pressure variability and incident cardiovascular disease, cardiovascular mortality and all-cause mortality: a systematic review. Age Ageing 2020;49:184–92. https://doi.org/10.1093/ageing/afz178 

105. Kim S, Xiao X, Chen J. Advances in photoplethysmography for personalized cardiovascular monitoring. Biosensors (Basel) 2022;12:863. https://doi.org/10.3390/bios12100863 

106. Dagamseh A, Qananwah Q, Al Quran H, Shaker Ibrahim K. Towards a portable-noninvasive blood pressure monitoring system utilizing the photoplethysmogram signal. Biomed Opt Express 2021;12:7732–51. https://doi.org/10.1364/boe.444535 

107. Sharman JE, Avolio AP, Baulmann J, Benetos A, Bla-cher J, Blizzard CL, et al. Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization. Eur Heart J 2017;38:2805–12. https://doi.org/10.1093/eurheartj/ehw632 

108. Sharman JE, O’Brien E, Alpert B, Schutte AE, Delles C, Hecht Olsen M, et al. Lancet Commission on Hypertension group position statement on the global improvement of accuracy standards for devices that measure blood pressure. J Hypertens 2020; 38:21–9. https://doi.org/10.1097/hjh.0000000000002246 

109. Lunardi M, Muhammad F, Shahzad A, Nadeem A, Combe L, Simpkin AJ, et al. Performance of wearable watch-type home blood pressure measurement devices in a real-world clinical sample. Clin Res Cardiol. 2023. https://doi.org/10.1007/s00392- 023-02353-7 

110. Clark CE, Warren FC, Boddy K, McDonagh STJ, Moore SF, Teresa Alzamora M, et al. Higher arm versus lower arm systolic blood pressure and cardiovascular outcomes: a meta-analysis of individual participant data from the INTERPRESS-IPD collaboration. Hypertension 2022;79:2328–35. https://doi.org/10.1161/hypertensionaha.121.18921 

111. Margolis KL, Dehmer SP, Sperl-Hillen J, O’Connor PJ, Asche SE, Bergdall AR, et al. Cardiovascular events and costs with home blood pressure telemonitoring and pharmacist management for uncontrolled hypertension. Hypertension 2020;76:1097–103. https://doi.org/10.1161/hypertensionaha.120.15492 

112. Sheppard JP, Tucker KL, Davison WJ, Stevens R, Aekplakorn W, Bosworth H B, et al. Self-monitoring of blood pressure in patients with hypertension-related multimorbidity: systematic review and individual patient data meta-analysis. Am J Hypertens 2020;33:243–51. https://doi.org/10.1093/ajh/hpz182 

113. Cooke G, Doust J, Sanders S. Is pulse palpation helpful in detecting atrial brillation? A systematic review. J Fam Pract 2006;55:130–4. 

114. Arvanitis M, Qi G, Bhatt DL, Post WS, Chatterjee N, Battle A, et al. Linear and non-linear Mendelian randomization analyses of the association between diastolic blood pressure and cardiovascular events: the J-curve revisited. Circulation 2021;143:895–906. https://doi.org/10.1161/circulationaha.120.049819 
115. Whelton SP, McEvoy JW, Shaw L, Psaty BM, Lima JAC, Budoff M, et al. Association of normal systolic blood pressure level with cardiovascular disease in the absence of risk factors. JAMA Cardiol 2020;5:1011–8. https://doi.org/10.1001/jamacardio.2020.1731
116. Rahimi K, Bidel Z, Nazarzadeh M, Copland E, Canoy D, Ramakrishnan R, et al. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 2021;397:1625–36. https://doi.org/10. 1016/S0140-6736(21)00590-0
117. Ji H, Niiranen TJ, Rader F, Henglin M, Kim A, Ebinger JE, et al. Sex differences in blood pressure associations with cardiovascular outcomes. Circulation 2021;143:761–3. https://doi.org/10.1161/circulationaha.120.049360
118. Kringeland E, Tell GS, Midtbø H, Igland J, Haugsgjerd TR, Gerdts E. Stage 1 hypertension, sex, and acute coronary syndromes during midlife: the Hordaland health study. Eur J Prev Cardiol 2022;29:147–54. https://doi.org/10.1093/eurjpc/zwab068
119. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH collaborative research group. N Engl J Med 1997;336:1117–24. https://doi.org/10.1056/nejm199704173361601 
120. Toledo E, Hu FB, Estruch R, Buil-Cosiales P, Corella D, Salas-Salvadó J, et al. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: results from a randomized controlled trial. BMC Med 2013;11:207. https://doi.org/10.1186/1741-7015-11-207 
121. Sundström J, Arima H, Jackson R, Turnbull F, Rahimi K, Chalmers J, et al. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med 2015;162:184–91. https://doi.org/10.7326/m14-0773 
122. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016;387:957–67. https://doi.org/10.1016/s0140-6736(15)01225-8 
123. Muntner P, Whelton PK. Using predicted cardiovascular disease risk in conjunction with blood pressure to guide antihypertensive medication treatment. J Am Coll Cardiol 2017;69:2446–56. https://doi.org/10.1016/j.jacc.2017.02.066 
124. Herrett E, Strongman H, Gadd S, Tomlinson L, Nitsch D, Bhaskaran K, et al. The importance of blood pressure thresholds versus predicted cardiovascular risk on subsequent rates of cardiovascular disease: a cohort study in English primary care. Lancet Healthy Longev 2022;3:e22–30. https://doi.org/10.1016/s2666-7568(21)00281-6 
125. Navar AM, Pencina MJ, Peterson ED. Assessing cardiovascular risk to guide hypertension diagnosis and treatment. JAMA Cardiol 2016;1:864–71. https://doi.org/10.1001/ jamacardio.2016.2861 
126. Kovell LC, Ahmed HM, Misra S, Whelton SP, Prokopowicz GP, Blumenthal RS, et al. US hypertension management guidelines: a review of the recent past and recommendations for the future. J Am Heart Assoc 2015;4:e002315. https://doi.org/10.1161/jaha.115.002315 
127. McEvoy JW, Martin SS, Dardari ZA, Miedema MD, Sandfort V, Yeboah J, et al. Coronary artery calcium to guide a personalized risk-based approach to initiation and intensification of antihypertensive therapy. Circulation 2017;135:153–65. https://doi.org/10.1161/circulationaha.116.025471 
128. Rossello X, Dorresteijn JA, Janssen A, Lambrinou E, Scherrenberg M, Bonnefoy-Cudraz E, et al. Risk prediction tools in cardiovascular disease prevention: a report from the ESC Prevention of CVD Programme led by the European Association of Preventive Cardiology (EAPC) in collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). Eur J Prev Cardiol 2019;26:1534–44. https://doi.org/10.1177/2047487319846715 
129. Ioannidis JPA. Diagnosis and treatment of hypertension in the 2017 ACC/AHA guidelines and in the real world. JAMA 2018;319:115–6. https://doi.org/10.1001/jama.2017.19672 
130. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 2018;138:e484–594. https://doi.org/10.1161/cir.0000000000000596 
131. Rahimi K, Bidel Z, Nazarzadeh M, Copland E, Canoy D, Wamil M, et al. Age-stratified and blood-pressure-stratified effects of blood-pressure-lowering pharmacotherapy for the prevention of cardiovascular disease and death: an individual participant-level data meta-analysis. Lancet 2021;398:1053–64. https://doi.org/10.1016/S0140-6736(21)01921-8 
132. Brunström M, Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis. JAMA Intern Med 2018;178:28–36. https://doi.org/10.1001/jamainternmed.2017.6015 
133. Arguedas JA, Leiva V, Wright JM. Blood pressure targets in adults with hypertension. Cochrane Database Syst Rev 2020;12:CD004349. https://doi.org/10.1002/14651858. CD004349.pub3 
134. Saiz LC, Gorricho J, Garjón J, Celaya MC, Erviti J, Leache L. Blood pressure targets for the treatment of people with hypertension and cardiovascular disease. Cochrane Database Syst Rev 2022;11:CD010315. https://doi.org/10.1002/14651858.CD010315. 
135. Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2015;373:2103–16. https://doi.org/10.1056/NEJMoa1511939 
136. Zhang W, Zhang S, Deng Y, Wu S, Ren J, Sun G, et al. Trial of intensive blood-pressure control in older patients with hypertension. N Engl J Med 2021;385:1268–79. https://doi.org/10.1056/NEJMoa2111437 
137. Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010;362:1575–85. https://doi.org/10.1056/NEJMoa1001286 
138. Ferrucci L, Furberg CD, Penninx BW, DiBari M, Williamson JD, Guralnik JM, et al. Treatment of isolated systolic hypertension is most effective in older patients with high-risk profile. Circulation 2001;104:1923–6. https://doi.org/10.1161/hc4101.097520 
139. Leening MJ, Ferket BS, Steyerberg EW, Kavousi M, Deckers JW, Nieboer D, et al. Sex differences in lifetime risk and first manifestation of cardiovascular disease: prospective population based cohort study. BMJ 2014;349:g5992. https://doi.org/10.1136/bmj.g5992 

140. Ference BA, Bhatt DL, Catapano AL, Packard CJ, Graham I, Kaptoge S, et al. Association of genetic variants related to combined exposure to lower low-density lipoproteins and lower systolic blood pressure with lifetime risk of cardiovascular disease. JAMA 2019;322:1381–91. https://doi.org/10.1001/jama.2019.14120 

141. Kannel WB. Risk stratification in hypertension: new insights from the Framingham study. Am J Hypertens 2000;13:S3–10. https://doi.org/10.1016/s0895-7061(99)00252-6 

142. Weycker D, Nichols GA, O’Keeffe-Rosetti M, Edelsberg J, Khan Z, Kaura S, et al. Risk-factor clustering and cardiovascular disease risk in hypertensive patients. Am J 
Hypertens 2007;20:599–607. https://doi.org/10.1016/j.amjhyper.2006.10.013 

143. Constanti M, Floyd CN, Glover M, Boffa R, Wierzbicki AS, McManus RJ. Cost-effectiveness of initiating pharmacological treatment in stage one hypertension based on 10-year cardiovascular disease risk: a Markov modeling study. Hypertension 
2021;77:682–91. https://doi.org/10.1161/hypertensionaha.120.14913 

144. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. 
JAMA 2017;317:165–82. https://doi.org/10.1001/jama.2016.19043 

145. Karmali KN, Ning H, Goff DC, Lloyd-Jones DM. Identifying individuals at risk for cardiovascular events across the spectrum of blood pressure levels. J Am Heart Assoc 
2015;4:e002126. https://doi.org/10.1161/jaha.115.002126 

146. Liu J, Li Y, Ge J, Yan X, Zhang H, Zheng X, et al. Lowering systolic blood pressure to 
less than 120 mm Hg versus less than 140 mm Hg in patients with high cardiovascular risk with and without diabetes or previous stroke: an open-label, blinded-outcome, randomised trial. Lancet 2024;404:245–55. https://doi.org/10.1016/S0140-6736(24) 01028-6 

147. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97:1837–47. https://doi.org/10.1161/01.cir.97.18.1837 

148. Sussman J, Vijan S, Hayward R. Using benefit-based tailored treatment to improve the use of antihypertensive medications. Circulation 2013;128:2309–17. https://doi.org/10.1161/circulationaha.113.002290 

149. Karmali KN, Lloyd-Jones DM, van der Leeuw J, Goff DC, Yusuf S, Zanchetti A, et al. Blood pressure-lowering treatment strategies based on cardiovascular risk versus blood pressure: a meta-analysis of individual participant data. PLoS Med 2018;15: e1002538. https://doi.org/10.1371/journal.pmed.1002538 

150. Gaziano TA, Steyn K, Cohen DJ, Weinstein MC, Opie LH. Cost-effectiveness analysis of hypertension guidelines in South Africa: absolute risk versus blood pressure level. Circulation 2005;112:3569–76. https://doi.org/10.1161/circulationaha.105.535922 

151. Basu S, Sussman JB, Hayward RA. Black-white cardiovascular disease disparities after target-based versus personalized benefit-based lipid and blood pressure treatment. MDM Policy Pract 2017;2:2381468317725741. https://doi.org/10.1177/2381468317725741 

152. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296–305. https://doi.org/10.1056/NEJMoa041031 

153. Klooster CCV, Bhatt DL, Steg PG, Massaro JM, Dorresteijn JAN, Westerink J, et al. Predicting 10-year risk of recurrent cardiovascular events and cardiovascular interventions in patients with established cardiovascular disease: results from UCC-SMART and REACH. Int J Cardiol 2021;325:140–8. https://doi.org/10.1016/j.ijcard.2020.09.053 

154. Kaasenbrood L, Boekholdt SM, van der Graaf Y, Ray KK, Peters RJG, Kastelein JJP, et al. Distribution of estima-ted 10-year risk of recurrent vascular events and residual risk in a secondary prevention population. Circulation 2016;134:1419–29. https://doi.org/10.1161/circulationaha.116.021314 

155. Eisen A, Bhatt DL, Steg PG, Eagle KA, Goto S, Guo J, et al. Angina and future cardiovascular events in stable patients with coronary artery disease: insights from the Reduction of Atherothrombosis for Continued Health (REACH) registry. J Am Heart Assoc 2016;5:e004080. https://doi.org/10.1161/jaha.116.004080 

156. Taylor CJ, Roalfe AK, Iles R, Hobbs FD. Ten-year prognosis of heart failure in the community: follow-up data from the Echocardiographic Heart of England Screening (ECHOES) study. Eur J Heart Fail 2012;14:176–84. https://doi.org/10.1093/eurjhf/hfr170 

157. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 2017;70:2476–86. https://doi.org/10.1016/j.jacc.2017.08.074 

158. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial brillation on the risk of death: the Framingham heart study. Circulation 1998;98:946–52. https://doi.org/10.1161/01.cir.98.10.946 

159. Pandey A, Patel KV, Vongpatanasin W, Ayers C, Berry JD, Mentz RJ, et al. Incorporation of biomarkers into risk assessment for allocation of antihypertensive medication according to the 2017 ACC/AHA high blood pressure guideline: a pooled cohort analysis. Circulation 2019;140:2076–88. https://doi.org/10.1161/circulationaha.119.043337 

160. Mulnier HE, Seaman HE, Raleigh VS, Soedamah-Muthu SS, Colhoun HM, Lawrenson RA, et al. Risk of myocardial infarction in men and women with type 2 diabetes in the UK: a cohort study using the general practice research database. Diabetologia 2008;51:1639–45. https://doi.org/10.1007/s00125-008-1076-y 

161. Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care 2006;29:798–804. https://doi.org/10.2337/diacare.29.04.06.dc05-1433 
162. Wong ND, Glovaci D, Wong K, Malik S, Franklin SS, Wygant G, et al. Global cardiovascular disease risk assessment in United States adults with diabetes. Diab Vasc Dis Res 2012;9:146–52. https://doi.org/10.1177/1479164112436403 
163. Paquette M, Bernard S, Cariou B, Hegele RA, Genest J, Trinder M, et al. Familial hypercholesterolemia-risk-score: a new score predicting cardiovascular events and cardiovascular mortality in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2021;41:2632–40. https://doi.org/10.1161/atvbaha.121.316106 
164. SCORE2-Diabetes Working Group and the ESC Cardiovascular Risk Collaboration. SCORE2-Diabetes: 10-year cardiovascular risk estimation in type 2 diabetes in Europe. Eur Heart J 2023;44:2544–56. https://doi.org/10.1093/eurheartj/ehad260 
165. SCORE Working Group and the ESC Cardiovascular Risk Collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J 2021;42:2439–54. https://doi.org/10.1093/eurheartj/ehab309 
166. SCORE OP working group and ESC Cardiovascular Risk Collaboration. SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur Heart J 2021;42:2455–67. https://doi.org/10.1093/eurheartj/ehab312 
167. Pignone M, Phillips CJ, Elasy TA, Fernandez A. Physicians’ ability to predict the risk of coronary heart disease. BMC Health Serv Res 2003;3:13. https://doi.org/10.1186/1472-6963-3-13 
168. Grover SA, Lowensteyn I, Esrey KL, Steinert Y, Joseph L, Abrahamowicz M. Do doctors accurately assess coronary risk in their patients? Preliminary results of the coronary health assessment study. BMJ 1995;310:975–8. https://doi.org/10.1136/bmj.310.6985.975 
169. Friedmann PD, Brett AS, Mayo-Smith MF. Differences in generalists’ and cardiologists’ perceptions of cardiovascular risk and the outcomes of preventive therapy in cardiovascular disease. Ann Intern Med 1996;124:414–21. https://doi.org/10.7326/0003-4819-124-4-199602150-00005 
170. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021;42:3227–337. https://doi.org/10.1093/eurheartj/ehab484 
171. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 2016;387:435–43. https://doi.org/10.1016/s0140-6736(15) 00805-3 
172. Herrett E, Gadd S, Jackson R, Bhaskaran K, Williamson E, van Staa T, et al. Eligibility and subsequent burden of cardiovascular disease of four strategies for blood pressure-lowering treatment: a retrospective cohort study. Lancet 2019;394:663–71. https://doi.org/10.1016/s0140-6736(19)31359-5 
173. Matsushita K, Kaptoge S, Hageman SHJ, Sang Y, Ballew SH, Grams ME, et al. Including measures of chronic kidney disease to improve cardiovascular risk prediction by SCORE2 and SCORE2-OP. Eur J Prev Cardiol 2023;30:8–16. https://doi.org/10.1093/eurjpc/zwac176 
174. Gerdts E, Sudano I, Brouwers S, Borghi C, Bruno RM, Ceconi C, et al. Sex differences in arterial hypertension. Eur Heart J 2022;43:4777–88. https://doi.org/10.1093/eurheartj/ehac470 
175. Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol 2013;28:1–19. https://doi.org/10.1007/s10654-013-9762-6 
176. Honigberg MC, Zekavat SM, Aragam K, Klarin D, Bhatt DL, Scott NS, et al. Long-term cardiovascular risk in women with hypertension during pregnancy. J Am Coll Cardiol 2019;74:2743–54. https://doi.org/10.1016/j.jacc.2019.09.052 
177. Leon LJ, McCarthy FP, Direk K, Gonzalez-Izquierdo A, Prieto-Merino D, Casas JP, et al. Preeclampsia and cardiovascular disease in a large UK pregnancy cohort of linked electronic health records: a CALIBER study. Circulation 2019;140:1050–60. https://doi.org/10.1161/circulationaha.118.038080 
178. Haug EB, Horn J, Markovitz AR, Fraser A, Klykken B, Dalen H, et al. Association of conventional cardiovascular risk factors with cardiovascular disease after hypertensive disorders of pregnancy: analysis of the Nord-Trøndelag health study. JAMA Cardiol 2019;4:628–35. https://doi.org/10.1001/jamacardio.2019.1746 
179. Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2017;10:e003497. https://doi.org/10.1161/circoutcomes.116.003497 
180. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 2019;62:905–14. https://doi.org/10.1007/s00125-019-4840-2 
181. Kyriacou H, Al-Mohammad A, Muehlschlegel C, Foster-Davies L, Bruco MEF, Legard C, et al. The risk of cardiovascular diseases after miscarriage, stillbirth, and induced abortion: a systematic review and meta-analysis. Eur Heart J Open 2022;2:oeac065. https://doi.org/10.1093/ehjopen/oeac065 
182. Kessous R, Shoham-Vardi I, Pariente G, Holcberg G, Sheiner E. An association between preterm delivery and long-term maternal cardiovascular morbidity. Am J Obstet Gynecol 2013;209:368.e1–8. https://doi.org/10.1016/j.ajog.2013.05.041 

183. Markovitz AR, Stuart JJ, Horn J, Williams PL, Rimm EB, Missmer SA, et al. Does pregnancy complication history improve cardiovascular disease risk prediction? Findings from the HUNT study in Norway. Eur Heart J 2019;40:1113–20. https://doi.org/10.1093/eurheartj/ehy863 

184. Saei Ghare Naz M, Sheidaei A, Aflatounian A, Azizi F, Ramezani Tehrani F. Does adding adverse pregnancy outcomes improve the Framingham cardiovascular risk score in women? Data from the Tehran Lipid and Glucose Study. J Am Heart Assoc 2022;11:e022349. https://doi.org/10.1161/jaha.121.022349 

185. Gladstone RA, Pudwell J, Nerenberg KA, Grover SA, Smith GN. Cardiovascular risk assessment and follow-up of women after hypertensive disorders of pregnancy: a prospective cohort study. J Obstet Gynaecol Can 2019;41:1157–67.e1. https://doi.org/10. 1016/j.jogc.2018.10.024 

186. Patel AP, Wang M, Kartoun U, Ng K, Khera AV. Quantifying and understanding the higher risk of atherosclerotic cardiovascular disease among South Asian individuals: results from the UK Biobank prospective cohort study. Circulation 2021;144:410–22. https://doi.org/10.1161/circulationaha.120.052430 

187. Tillin T, Hughes AD, Whincup P, Mayet J, Sattar N, McKeigue PM, et al. Ethnicity and prediction of cardiovascular disease: performance of QRISK2 and Framingham scores in a U.K. tri-ethnic prospective cohort study (SABRE — Southall And Brent REvisited). Heart 2014;100:60–7. https://doi.org/10.1136/heartjnl-2013-304474 

188. Rabanal KS, Igland J, Tell GS, Jenum AK, Klemsdal TO, Ariansen I, et al.Validation of the cardiovascular risk model NORRISK 2 in South Asians and people with diabetes. Scand Cardiovasc J 2021;55:56–62. https://doi.org/10.1080/14017431.2020.1821909 

189. Veronesi G, Gianfagna F, Giampaoli S, Chambless LE, Mancia G, Cesana G, et al. Improving long-term prediction of first cardiovascular event: the contribution of family history of coronary heart disease and social status. Prev Med 2014;64:75–80. https://doi.org/10.1016/j.ypmed.2014.04.007 

190. Sivapalaratnam S, Boekholdt SM, Trip MD, Sandhu MS, Luben R, Kastelein JJP, et al. Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study. Heart 2010;96:1985–9. https://doi.org/10.1136/hrt.2010.210740 

191. Kimenai DM, Pirondini L, Gregson J, Prieto D, Pocock SJ, Perel P, et al. Socioeconomic deprivation: an important, largely unrecognized risk factor in primary prevention of cardiovascular disease. Circulation 2022;146:240–8. https://doi.org/10.1161/circulationaha.122.060042 

192. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Leh-man AJ, Lacaille D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis 2012;71:1524–9. https://doi.org/10.1136/annrheumdis-2011-200726 

193. Crowson CS, Matteson EL, Roger VL, Therneau TM, Gabriel SE. Usefulness of risk scores to estimate the risk of cardiovascular disease in patients with rheumatoid arthritis. Am J Cardiol 2012;110:420–4. https://doi.org/10.1016/j.amjcard.2012.03.044 

194. Arts EE, Popa C, Den Broeder AA, Semb AG, Toms T, Kitas GD, et al. Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis. Ann Rheum Dis 2015;74:668–74. https://doi.org/10.1136/annrheumdis-2013-204024 

195. Arts EE, Popa CD, Den Broeder AA, Donders R, Sandoo A, Toms T, et al. Prediction of cardiovascular risk in rheumatoid arthritis: performance of original and adapted SCORE algorithms. Ann Rheum Dis 2016;75:674–80. https://doi.org/10.1136/annrheumdis-2014-206879 

196. Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA 2006;296:1735–41. https://doi.org/10.1001/jama.296.14.1735 

197. Miller IM, Ellervik C, Yazdanyar S, Jemec GB. Meta-analysis of psoriasis, cardiovascular disease, and associated risk factors. J Am Acad Dermatol 2013;69:1014–24. https://doi.org/10.1016/j.jaad.2013.06.053 

198. Eder L, Chandran V, Gladman DD. The Framingham risk score underestimates the extent of subclinical atherosclerosis in patients with psoriatic disease. Ann Rheum Dis 2014;73:1990–6. https://doi.org/10.1136/annrheumdis-2013-203433 

199. Armstrong EJ, Harskamp CT, Armstrong AW. Psoriasis and major adverse cardiovascular events: a systematic review and meta-analysis of observational studies. J Am Heart Assoc 2013;2:e000062. https://doi.org/10.1161/jaha.113.000062 

200. Elmets CA, Leonardi CL, Davis DMR, Gelfand JM, Lichten J, Mehta NN, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with awareness and attention to comorbidities. J Am Acad Dermatol 2019;80:1073–113. https://doi.org/10.1016/j.jaad.2018.11.058 

201. Lu X, Wang Y, Zhang J, Pu D, Hu N, Luo J, et al. Patients with systemic lupus erythematosus face a high risk of cardiovascular disease: a systematic review and meta-analysis. Int Immunopharmacol 2021;94:107466. https://doi.org/10.1016/j.intimp.2021.107466 

202. Drosos GC, Konstantonis G, Sfikakis PP, Tektonidou MG. Underperformance of clinical risk scores in identifying vascular ultrasound-based high cardiovascular risk in systemic lupus erythematosus. Eur J Prev Cardiol. 2020. https://doi.org/10.1177/2047487320906650 

203. Shah ASV, Stelzle D, Lee KK, Beck EJ, Alam S, Clifford S, et al. Global burden of atherosclerotic cardiovascular di-sease in people living with HIV: systematic review and meta-analysis. Circulation 2018;138:1100–12. https://doi.org/10.1161/circulationaha.117.033369 
204. Triant VA, Perez J, Regan S, Massaro JM, Meigs JB, Grinspoon SK, et al. Cardiovascular risk prediction functions underestimate risk in HIV infection. Circulation 2018;137:2203–14. https://doi.org/10.1161/circulationaha.117.028975 
205. Triant VA, Lyass A, Hurley LB, Borowsky LH, Ehrbar RQ, H W, et al. Cardiovascular Risk Estimation Is Suboptimal in People With HIV. J Am Heart Assoc. 2024;13:e029228. https://doi.org/10.1161/JAHA.123.029228 
206. Correll CU, Solmi M, Veronese N, Bortolato B, Rosson S, Santonastaso P, et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry 2017;16:163–80. https://doi.org/10.1002/wps.20420 
207. Lambert AM, Parretti HM, Pearce E, Price MJ, Riley M, Ryan R, et al. Temporaltrendsin associations between severe mental illness and risk of cardiovascular disease: a systematic review and meta-analysis. PLoS Med 2022;19:e1003960. https://doi.org/10.1371/journal.pmed.1003960 
208. Cunningham R, Poppe K, Peterson D, Every-Pal-mer S, Soosay I, Jackson R. Prediction of cardiovascular disease risk among people with severe mental illness: a cohort study. PLoS One 2019;14:e0221521. https://doi.org/10.1371/journal.pone.0221521 
209. Yeboah J, Young R, McClelland RL, Delaney JC, Polonsky TS, Dawood FZ, et al. Utility of nontraditional risk markers in atherosclerotic cardiovascular disease risk assessment. J Am Coll Cardiol 2016;67:139–47. https://doi.org/10.1016/j.jacc.2015.10.058 
210. Akintoye E, Afonso L, Bengaluru Jayanna M, Bao W, Briasoulis A, Robinson J, et al. Prognostic utility of risk enhancers and coronary artery calcium score recommended in the 2018 ACC/AHA multisociety cholesterol treatment guidelines over the pooled cohort equation: insights from 3 large prospective cohorts. J Am Heart Assoc 2021;10: e019589. https://doi.org/10.1161/jaha.120.019589 
211. Peters SA, den Ruijter HM, Bots ML, Moons KG. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart 2012;98:177–84. https://doi.org/10.1136/heartjnl-2011-300747 
212. Nicolaides AN, Panayiotou AG, Griffin M, Tyllis T, Bond D, Georgiou N, et al. Arterial ultrasound testing to predict atherosclerotic cardiovascular events. J Am Coll Cardiol 2022;79:1969–82. https://doi.org/10.1016/j.jacc.2022.03.352 
213. Laclaustra M, Casasnovas JA, Fernández-Ortiz A, Fuster V, León-Latre M, Jiménez-Borreguero LJ, et al. Femoral and carotid subclinical atherosclerosis association with risk factors and coronary calcium: the AWHS study. J Am Coll Cardiol 2016;67:1263–74. https://doi.org/10.1016/j.jacc.2015.12.056 
214. López-Melgar B, Fernández-Friera L, Oliva B, García-Ruiz JM, Peñalvo JL, Gómez-Talavera S, et al. Subclinical atherosclerosis burden by 3D ultrasound in midlife: the PESA study. J Am Coll Cardiol 2017;70:301–13. https://doi.org/10.1016/j.jacc. 2017.05.033 
215. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 2014;63:636–46. https://doi.org/10.1016/j.jacc.2013.09.063 
216. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-Ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension 2017;69:1045–52. https://doi.org/10.1161/hypertensionaha.117.09097 
217. Stone K, Veerasingam D, Meyer ML, Heffernan KS, Higgins S, Maria Bruno R, et al. Reimagining the value of brachial-ankle pulse wave velocity as a biomarker of cardiovascular disease risk — a call to action on behalf of VascAgeNet. Hypertension 2023;80:1980–92. https://doi.org/10.1161/hypertensionaha.123.21314 
218. An DW, Hansen TW, Aparicio LS, Chori B, Huang Q-F, Wei F-F, et al. Derivation of an outcome-driven threshold for aortic pulse wave velocity: an individual-participant meta-analysis. Hypertension 2023;80:1949–59. https://doi.org/10.1161/hypertensionaha.123.21318 
219. de Lemos JA, Ayers CR, Levine BD, deFilippi CR, Wang TJ, Hundley W, et al. Multimodality strategy for cardiovascular risk assessment: performance in 2 population-based cohorts. Circulation 2017;135:2119–32. https://doi.org/10.1161/circulationaha.117.027272 
220. Hageman SHJ, Petitjean C, Pennells L, Kaptoge S, Pajouheshnia R, Tillmann T, et al. Improving 10-year cardiovascular risk prediction in apparently healthy people: exible addition of risk modifiers on top of SCORE2. Eur J Prev Cardiol 2023;30:1705–14. https://doi.org/10.1093/eurjpc/zwad187 
221. McEvoy JW, Chen Y, Nambi V, Ballantyne CM, Sharrett AR, Appel LJ, et al. High-sensitivity cardiac troponin T and risk of hypertension. Circulation 2015;132:825–33. https://doi.org/10.1161/circulationaha.114.014364 
222. Hussain A, Sun W, Deswal A, de Lemos JA, McEvoy JW, Hoogeveen RC, et al. Association of NT-ProBNP, blood pressure, and cardiovascular events: the ARIC study. J Am Coll Cardiol 2021;77:559–71. https://doi.org/10.1016/j.jacc.2020.11.063 
223. Stuart JJ, Tanz LJ, Cook NR, Spiegelman D, Missmer SA, Rimm EB, et al. Hypertensive disorders of pregnancy and 10-year cardiovascular risk prediction. J Am Coll Cardiol 2018;72:1252–63. https://doi.org/10.1016/j.jacc.2018.05.077 
224. Timpka S, Fraser A, Schyman T, Stuart JJ, Åsvold BO, Mogren I, et al. The value of pregnancy complication history for 10-year cardiovascular disease risk prediction in middle-aged women. Eur J Epidemiol 2018;33:1003–10. https://doi.org/10.1007/ s10654-018-0429-1 

225. Blankenberg S, Salomaa V, Makarova N, Ojeda F, Wild P, Lackner KJ, et al. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur Heart J 2016;37:2428–37. https://doi.org/10.1093/eurheartj/ehw172 

226. Zeller T, Tunstall-Pedoe H, Saarela O, Ojeda F, Schnabel RB, Tuovinen T, et al. High population prevalence of cardiac troponin I measured by a high-sensitivity assay and cardiovascular risk estimation: the MORGAM biomarker project Scottish cohort. Eur Heart J 2014;35:271–81. https://doi.org/10.1093/eurheartj/eht406 

227. Schoenthaler AM, Lancaster KJ, Chaplin W, Butler M, Forsyth J, Ogedegbe G, et al. Cluster randomized clinical trial of FAITH (faith-based approaches in the treatment of hypertension) in blacks. Circ Cardiovasc Qual Outcomes 2018;11:e004691. https://doi.org/10.1161/circoutcomes.118.004691 

228. Beaney T, Schutte AE, Stergiou GS, Borghi C, Bur-ger D, Charchar F, et al. May Measurement Month 2019: the global blood pressure screening campaign of the international society of Hypertension. Hypertension 2020;76:333–41. https://doi.org/10.1161/hypertensionaha.120.14874 

229. Victor RG, Lynch K, Li N, Blyler C, Muhammad E, Handler J, et al. A cluster-randomized trial of blood-pressure reduction in black barbershops. N Engl J Med 2018;378:1291–301. https://doi.org/10.1056/NEJMoa1717250 

230. Sun Y, Mu J, Wang DW, Ouyang N, Xing L, Guo X, et al. A village doctor-led multifaceted intervention for blood pressure control in rural China: an open, cluster randomised trial. Lancet 2022;399:1964–75. https://doi.org/10.1016/s0140-6736(22)00325-7 

231. Schmidt BM, Durao S, Toews I, Bavuma CM, Hohlfeld A, Nury E, et al. Screening strategies for hypertension. Cochrane Database Syst Rev 2020;5:CD013212. https://doi.org/ 10.1002/14651858.CD013212.pub2 

232. Kaczorowski J, Chambers LW, Dolovich L, Paterson JM, Karwalajtys T, Gierman T, et al. Improving cardiovascular health at population level: 39 community cluster randomised trial of Cardiovascular Health Awareness Program (CHAP). BMJ 2011;342: d442. https://doi.org/10.1136/bmj.d442 

233. Lindholt JS, Søgaard R, Rasmussen LM, Mejldal A, Lambrechtsen J, Steffensen FH, et al. Five-year outcomes of the Danish cardiovascular screening (DANCAVAS) trial. N Engl J Med 2022;387:1385–94. https://doi.org/10.1056/NEJMoa2208681 

234. Sheppard JP, Schwartz CL, Tucker KL, McManus RJ. Modern management and diagnosis of hypertension in the United Kingdom: home care and self-care. Ann Glob Health 2016;82:274–87. https://doi.org/10.1016/j.aogh.2016.02.005 

235. Andersson H, Hedström L, Bergman S, Bergh H. The outcome of two-step blood pressure screening in dental healthcare. Scand J Public Health 2018;46:623–9. https://doi.org/10.1177/1403494818759840 

236. Zhang H, Thijs L, Kuznetsova T, Fagard RH, Li X, Staessen JA. Progression to hypertension in the non-hypertensive participants in the Flemish study on environment, genes and health outcomes. J Hypertens 2006;24:1719–27. https://doi.org/10.1097/01.hjh.0000242395.07473.92 

237. Conen D, Aeschbacher S, Thijs L, Li Y, Boggia J, Asayama K, et al. Age-specific differences between conventional and ambulatory daytime blood pressure values. Hypertension 2014;64:1073–9. https://doi.org/10.1161/hypertensionaha.114.03957 

238. Karnjanapiboonwong A, Anothaisintawee T, Chaikledkaew U, Dejthevaporn C, Attia J, Thakkinstian A. Diagnostic performance of clinic and home blood pressure measurements compared with ambulatory blood pressure: a systematic review and meta-analysis. BMC Cardiovasc Disord 2020;20:491. https://doi.org/10.1186/s12872- 020-01736-2 

239. Viera AJ, Yano Y, Lin FC, Simel DL, Yun J, Dave G, et al. Does this adult patient have hypertension? The rational clinical examination systematic review. JAMA 2021;326:339–47. https://doi.org/10.1001/jama.2021.4533 

240. Green BB, Anderson ML, Cook AJ, Ehrlich K, Hall YN, Hsu C, et al. Clinic, home, and kiosk blood pressure measurements for diagnosing hypertension: a randomized diagnostic study. J Gen Intern Med 2022;37:2948–56. https://doi.org/10.1007/s11606-022-07400-z 

241. Kim JS, Rhee MY, Kim CH, Kim YR, Do U, Kim J-H, et al. Algorithm for diagnosing hypertension using out-of-office blood pressure measurements. J Clin Hypertens (Greenwich) 2021;23:1965–74. https://doi.org/10.1111/jch.14382 

242. van den Born BH, Lip GYH, Brguljan-Hitij J, Cremer A, Segura J, Morales E, et al. ESC Council on Hypertension position document on the management of hypertensive emergencies. Eur Heart J Cardiovasc Pharmacother 2019;5:37–46. https://doi.org/10.1093/ehjcvp/pvy032 

243. Ross S, Walker A, MacLeod MJ. Patient compliance in hypertension: role of illness perceptions and treatment beliefs. J Hum Hypertens 2004;18:607–13. https://doi.org/10.1038/sj.jhh.1001721 

244. Hagger MS, Koch S, Chatzisarantis NLD, Orbell S. The common sense model of self-regulation: meta-analysis and test of a process model. Psychol Bull 2017;143:1117–54. https://doi.org/10.1037/bul0000118 

245. Meyer D, Leventhal H, Gutmann M. Common-sense models of illness: the example of hypertension. Health Psychol 1985;4:115–35. https://doi.org/10.1037//0278-6133.4.2.115 

246. O’Carroll RE, Chambers JA, Dennis M, Sudlow C, Johnston M. Improving adherence to medication in stroke survivors: a pilot randomised controlled trial. Ann Behav Med 2013;46:358–68. https://doi.org/10.1007/s12160-013-9515-5 
247. Hollands GJ, Usher-Smith JA, Hasan R, Alexander F, Clarke N, Griffin SJ. Visualising health risks with medical ima-ging for changing recipients’ health behaviours and risk factors: systematic review with meta-analysis. PLoS Med 2022;19:e1003920. https://doi.org/10.1371/journal.pmed.1003920 
248. Burnier M. Medication adherence and persistence as the cornerstone of effective antihypertensive therapy. Am J Hypertens 2006;19:1190–6. https://doi.org/10.1016/j.amjhyper.2006.04.006 
249. Parati G, Goncalves A, Soergel D, Bruno RM, Caiani EG, Gerdts E. New perspectives for hypertension management: progress in methodological and technological developments. Eur J Prev Cardiol 2023;30:48–60. https://doi.org/10.1093/eurjpc/zwac203 
250. Naderi SH, Bestwick JP, Wald DS. Adherence to drugs that prevent cardiovascular disease: meta-analysis on 376,162 patients. Am J Med 2012;125:882–7.e1. https://doi.org/10.1016/j.amjmed.2011.12.013 
251. Chang TE, Ritchey MD, Park S, Chang A, Odom EC, Durthaler J, et al. National rates of nonadherence to antihypertensive medications among insured adults with hypertension, 2015. Hypertension 2019;74:1324–32. https://doi.org/10.1161/hypertensionaha.119.13616 
252. Qvarnström M, Kahan T, Kieler H, Brandt L, Hasselström J, Bengtsson Boström K, et al. Persistence to antihypertensive drug treatment in Swedish primary healthcare. Eur J Clin Pharmacol 2013;69:1955–64. https://doi.org/10.1007/s00228-013-1555-z 
253. Burnier M, Egan BM. Adherence in hypertension. Circ Res 2019;124:1124–40. https://doi.org/10.1161/circresaha.118.313220 
254. Curneen JMG, Rabbitt L, Browne D, O’Donoghue DF, Alansari Y, Harhen B, et al. Major disparities in patient-reported adherence compared to objective assessment of adherence using mass spectrometry: a prospective study in a tertiary-referral hypertension clinic. Br J Clin Pharmacol 2022;89:1948–55. https://doi.org/10.1111/bcp.15292 
255. Corrao G, Parodi A, Nicotra F, Zambon A, Merlino L, Cesana G, et al. Better compliance to antihypertensive medications reduces cardiovascular risk. J Hypertens 2011;29:610–8. https://doi.org/10.1097/HJH.0b013e328342ca97 
256. Kim S, Shin DW, Yun JM, Hwang Y, Park SK, Ko Y-J, et al. Medication adherence and the risk of cardiovascular mortality and hospitalization among patients with newly prescribed antihypertensive medications. Hypertension 2016;67:506–12. https://doi.org/10.1161/hypertensionaha.115.06731 
257. Lane D, Lawson A, Burns A, Azizi M, Burnier M, Jo-nes DJL, et al. Nonadherence in hypertension: how to develop and implement chemical adherence testing. Hypertension 2022;79:12–23. https://doi.org/10.1161/hypertensionaha.121.17596 
258. Marshall IJ, Wolfe CD, McKevitt C. Lay perspectives on hypertension and drug adherence: systematic review of qualitative research. BMJ 2012;345:e3953. https://doi.org/10.1136/bmj.e3953 
259. Schoenthaler A, Kna GJ, Fiscella K, Ogedegbe G. Addressing the social needs of hypertensive patients: the role of patient-provider communication as a predictor of medication adherence. Circ Cardiovasc Qual Outcomes 2017;10:e003659. https://doi.org/10.1161/circoutcomes.117.003659 
260. Schmieder RE, Wassmann S, Predel HG, Weisser B, Blettenberg J, Gillessen A, et al. Improved persistence to medication, decreased cardiovascular events and reduced all-cause mortality in hypertensive patients with use of single-pill combinations: results from the START-study. Hypertension 2023;80:1127–35. https://doi.org/10.1161/hypertensionaha.122.20810 
261. Ruzicka M, Leenen FHH, Ramsay T, Bugeja A, Edwards C, McCormick B, et al. Use of directly observed therapy to assess treatment adherence in patients with apparent treatment-resistant hypertension. JAMA Intern Med 2019;179:1433–4. https://doi.org/10.1001/jamainternmed.2019.1455 
262. Pio-Abreu A, Trani-Ferreira F, Silva GV, Bortolotto LA, Drager LF. Directly observed therapy for resistant/refractory hypertension diagnosis and blood pressure control. Heart 2022;108:1952–6. https://doi.org/10.1136/heartjnl-2022-320802 
263. Tomaszewski M, White C, Patel P, Masca N, Da-mani R, Hepworth J, et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart 2014;100:855–61. https://doi.org/10.1136/heartjnl-2013-305063 
264. Forette F, Seux ML, Staessen JA, et al. The prevention of dementia with antihypertensive treatment: new evidence from the systolic hypertension in Europe (Syst-Eur) study. Arch Intern Med 2002;162:2046–52. https://doi.org/10.1001/archinte.162.18.2046 
265. Näslund U, Ng N, Lundgren A, Fhärm E, Grönlund C, Johansson H, et al. Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA): a pragmatic, open-label, randomised controlled trial. Lancet 2019;393:133–42. https://doi.org/10.1016/s0140-6736(18)32818-6 
266. Bengtsson A, Norberg M, Ng N, Carlberg B, Grönlund C, Hultdin J, et al. The beneficial effect over 3 years by pictorial information to patients and their physician about subclinical atherosclerosis and cardiovascular risk: results from the VIPVIZA randomized clinical trial. Am J Prev Cardiol 2021;7:100199. https://doi.org/10.1016/j.ajpc.2021.100199 
267. Sjölander M, Carlberg B, Norberg M, Näslund U, Ng N. Prescription of lipid-lowering and antihypertensive drugs following pictorial information about subclinical atherosclerosis: a secondary outcome of a randomized clinical trial. JAMA Netw Open 2021;4:e2121683. https://doi.org/10.1001/jamanetworkopen.2021.21683 
268. Muiesan ML, Salvetti M, Monteduro C, Bonzi B, Paini A, Viola S, et al. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension 2004;43:731–8. https://doi.org/10.1161/01.HYP. 0000121223.44837.de 

269. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM, et al. Impact of 
aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation 2001;103:987–92. https://doi.org/10.1161/01.cir.103.7.987 

270. Cardoso CRL, Salles GF. Prognostic value of changes in aortic stiffness for cardiovascular outcomes and mortality in resistant hypertension: a cohort study. Hypertension 2022;79:447–56. https://doi.org/10.1161/hypertensionaha.121.18498 

271. Laurent S, Chatellier G, Azizi M, Calvet D, Choukroun G, Danchin N, et al. SPARTE study: normalization of arterial stiffness and cardiovascular events in patients with hypertension at medium to very high risk. Hypertension 2021;78:983–95. https://doi.org/10.1161/hypertensionaha.121.17579 

272. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE, et al. Summary of recommendation statements. Kidney Int Suppl (2011) 2013;3:5–14. https://doi.org/10.1038/kisup.2012.77 

273. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol 2015;3:514–25. https://doi.org/10.1016/s2213-8587(15)00040-6 

274. Cheung AK, Rahman M, Reboussin DM, Craven TE, Greene T, Kimmel PL, et al. Effects of intensive BP control in CKD. J Am Soc Nephrol 2017;28:2812–23. https://doi.org/10.1681/asn.2017020148 

275. Malhotra R, Nguyen HA, Benavente O, Mete M, Ho-ward BV, Mant J, et al. Association between more intensive vs less intensive blood pressure lowering and risk of mortality in chronic kidney disease stages 3 to 5: a systematic review and meta-analysis. JAMA Intern Med 2017;177:1498–505. https://doi.org/10.1001/jamainternmed.2017.4377 

276. Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013;158:825–30. https://doi.org/10.7326/0003-4819-158-11-201306040-00007 

277. Aboyans V, Ricco JB, Bartelink MEL, Björck M, Brodmann M, Cohnert T, et al. 2017 ESC Guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: the European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 2018;39:763–816. https://doi.org/10.1093/eurheartj/ehx095 

278. Iribarren C, Round AD, Lu M, Okin PM, McNulty EJ. Cohort study of ECG left ventricular hypertrophy trajectories: ethnic disparities, associations with cardiovascular outcomes, and clinical utility. J Am Heart Assoc 2017;6:e004954. https://doi.org/10.1161/jaha.116.004954 

279. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Dahlöf B. Baseline characteristics in relation to electrocardiographic left ventricular hypertrophy in hypertensive patients: the Losartan Intervention For Endpoint reduction (LIFE) in hypertension study. Hypertension 2000;36:766–73. https://doi.org/10.1161/01.hyp.36.5.766 

280. Okin PM, Oikarinen L, Viitasalo M, Toivonen L, Kjeldsen SE, Nieminen MS, et al. Prognostic value of changes in the electrocardiographic strain pattern during antihypertensive treatment: the Losartan Intervention for End-point reduction in hypertension study (LIFE). Circulation 2009;119:1883–91. https://doi.org/10.1161/circulationaha.108.812313 

281. Lehtonen AO, Puukka P, Varis J, Porthan K, Tikkanen JT, Nieminen MS, et al. Prevalence and prognosis of ECG abnormalities in normotensive and hypertensive individuals. J Hypertens 2016;34:959–66. https://doi.org/10.1097/hjh.0000000000000882 

282. Pewsner D, Jüni P, Egger M, Battaglia M, Sundström J, Bachmann LM. Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review. BMJ 2007;335:711. https://doi.org/10.1136/bmj.39276.636354.AE 

283. Kuznetsova T, Thijs L, Knez J, Cauwenberghs N, Petit T, Gu Y-M. Longitudinal changes in left ventricular diastolic function in a general population. Circ Cardiovasc Imaging 2015;8:e002882. https://doi.org/10.1161/circimaging.114.002882 

284. Zhao L, Zierath R, Claggett B, Dorbala P, Matsushita K, Kitzman D. Longitudinal changes in left ventricular diastolic function in late life: the ARIC study. JACC Cardiovasc Imaging 2023;16:1133–45. https://doi.org/10.1016/j.jcmg.2023.02.022 

285. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 2003;289:194–202. https://doi.org/10.1001/jama.289.2.194 

286. Sundström J, Lind L, Arnlöv J, Zethelius B, Andrén B, Lithell HO. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation 2001;103:2346–51. https://doi.org/10.1161/01.cir.103.19.2346 

287. Seko Y, Kato T, Yamaji Y, Haruna Y, Nakane E, Haruna T, et al. Discrepancy between left ventricular hypertrophy by echocardiography and electrocardiographic hypertrophy: clinical characteristics and outcomes. Open Heart 2021;8:e001765. https://doi.org/10.1136/openhrt-2021-001765 
288. Modin D, Biering-Sørensen SR, Mogelvang R, Landler N, Jensen JS, Biering-Sørensen T. Prognostic value of echocardiography in hypertensive versus nonhypertensive participants from the general population. Hypertension 2018;71:742–51. https://doi.org/10.1161/hypertensionaha.117.10674 
289. Armstrong AC, Jacobs DR Jr, Gidding SS, Colangelo LA, Gjesdal O, Lewis CE, et al. Framingham score and LV mass predict events in young adults: CARDIA study. Int J Cardiol 2014;172:350–5. https://doi.org/10.1016/j.ijcard.2014.01.003 
290. Kuznetsova T, Thijs L, Knez J, Herbots L, Zhang Z, Staessen JA. Prognostic value of left ventricular diastolic dysfunction in a general population. J Am Heart Assoc 2014;3:e000789. https://doi.org/10.1161/jaha.114.000789 
291. Marwick TH, Gillebert TC, Aurigemma G, et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). Eur Heart J Cardiovasc Imaging 2015;16:577–605. https://doi.org/10.1093/ehjci/jev076 
292. Douglas PS, Garcia MJ, Haines DE, Lai WW, Manning WJ, Patel AR, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. A report of the American College of Cardiology Foundation appropriate use criteria task force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians. J Am Soc Echocardiogr 2011;24:229–67. https://doi.org/10.1016/j.echo.2010.12.008 
293. van Rosendael AR, Bax AM, Smit JM, van den Hoogen IJ, Ma X, Al’Aref S, et al. Clinical risk factors and atherosclerotic plaque extent to de ne risk for major events in patients without obstructive coronary artery disease: the long-term coronary computed tomography angiography CONFIRM registry. Eur Heart J Cardiovasc Imaging 2020;21:479–88. https://doi.org/10.1093/ehjci/jez322 
294. Mehta A, Pandey A, Ayers CR, Khera A, Sperling LS, Szklo M, et al. Predictive value of coronary artery calcium score categories for coronary events versus strokes: impact of sex and race: MESA and DHS. Circ Cardiovasc Imaging 2020;13:e010153. https://doi.org/10.1161/circimaging.119.010153 
295. Bengtsson A, Lindvall K, Norberg M, Fhärm E. Increased knowledge makes a difference! — general practitioners’ experiences of pictorial information about subclinical atherosclerosis for primary prevention: an interview study from the VIPVIZA trial. Scand J Prim Health Care 2021;39:77–84. https://doi.org/10.1080/02813432.2021.1882083 
296. Ibanez B, Fernández-Ortiz A, Fernández-Friera L, García-Lunar I, Andrés V, Fuster V. Progression of early subclinical atherosclerosis (PESA) study: JACC focus seminar 7/8. J Am Coll Cardiol 2021;78:156–79. https://doi.org/10.1016/j.jacc.2021.05.011 
297. Den Ruijter HM, Peters SA, Anderson TJ, Britton AR, Dekker JM, Eijkemans MJ. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA 2012;308:796–803. https://doi.org/10.1001/jama.2012.9630 
298. Downie LE, Hodgson LA, DSylva C, McIntosh RL, Rogers SL, Connell P, et al. Hypertensive retinopathy: comparing the Keith-Wagener-Barker to a simplified classification. J Hypertens 2013;31:960–5. https://doi.org/10.1097/HJH.0b013e32835efea3 
299. Liew G, Xie J, Nguyen H, Keay L, Kamran Ikram M, McGeechan K, et al. Hypertensive retinopathy and cardiovascular disease risk: 6 population-based cohorts meta-analysis. Int J Cardiol Cardiovasc Risk Prev 2023;17:200180. https://doi.org/10.1016/j.ijcrp. 2023.200180 
300. Padmanabhan S, Caulfield M, Dominiczak AF. Genetic and molecular aspects of hypertension. Circ Res 2015;116:937–59. https://doi.org/10.1161/circresaha.116.303647 
301. Casey R, Neumann HPH, Maher ER. Genetic stratification of inherited and sporadic phaeochromocytoma and paraganglioma: implications for precision medicine. Hum Mol Genet 2020;29:R128–137. https://doi.org/10.1093/hmg/ddaa201 
302. Rossi GP, Ceolotto G, Caroccia B, Lenzini L. Genetic screening in arterial hypertension. Nat Rev Endocrinol 2017;13:289–98. https://doi.org/10.1038/nrendo.2016.196 
303. Cascón A, Calsina B, Monteagudo M, Mellid S, Díaz-Talavera A, Currás-Freixes M, et al. Genetic bases of pheochromocytoma and paraganglioma. J Mol Endocrinol 2023;70: e220167. https://doi.org/10.1530/jme-22-0167 
304. Staessen JA, Wang J, Bianchi G, Birkenhäger WH. Essential hypertension. Lancet 2003;361:1629–41. https://doi.org/10.1016/s0140-6736(03)13302-8 
305. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo A-P, Grebe SKG, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014;99:1915–42. https://doi.org/10. 1210/jc.2014-1498 
306. Poulter NR, Prabhakaran D, Caulfield M. Hypertension. Lancet 2015;386:801–12. https://doi.org/10.1016/s0140-6736(14)61468-9 
307. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016;134:441–50. https://doi.org/10.1161/circulationaha.115.018912 
308. Wei FF, Zhang ZY, Huang QF, Staessen JA. Diagnosis and management of resistant hypertension: state of the art. Nat Rev Nephrol 2018;14:428–41. https://doi.org/10.1038/s41581-018-0006-6 

309. Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb Cheryl R, et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension 2018;72:e53–90. https://doi.org/10.1161/hyp.0000000000000084 

310. Carey RM, Sakhuja S, Calhoun DA, Whelton PK, Muntner P. Prevalence of apparent treatment-resistant hypertension in the United States. Hypertension 2019;73:424–31. https://doi.org/10.1161/hypertensionaha.118.12191 

311. Vongpatanasin W. Resistant hypertension: a review of diagnosis and management. JAMA 2014;311:2216–24. https://doi.org/10.1001/jama.2014.5180 

312. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 2015;385:1957–65. https://doi.org/10.1016/s0140-6736(14) 61942-5 

313. Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol 2006;48:2293–300. https://doi.org/10.1016/j.jacc.2006.07.059 

314. Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LKG, Amaro ACS, et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 2011;58:811–7. https://doi.org/10.1161/hypertensionaha.111.179788 

315. Douma S, Petidis K, Doumas M, Papaefthimiou P, Triantafyllou A, Kartali N, et al. Prevalence of primary hyperaldosteronism in resistant hypertension: a retrospective observational study. Lancet 2008;371:1921–6. https://doi.org/10.1016/s0140-6736(08)60834-x 

316. Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 2017;69:1811–20. https://doi.org/10.1016/j.jacc.2017.01.052 

317. Käyser SC, Deinum J, de Grauw WJ, Schalk BWM, Bor HJHJ, Lenders JWM, et al. Prevalence of primary aldosteronism in primary care: a cross-sectional study. Br J Gen Pract 2018;68:e114–22. https://doi.org/10.3399/bjgp18X694589 

318. Rimoldi SF, Scherrer U, Messerli FH. Secondary arterial hypertension: when, who, and how to screen? Eur Heart J 2014;35:1245–54. https://doi.org/10.1093/eurheartj/eht534 

319. Rossi GP, Bisogni V, Rossitto G, Maiolino G, Cesari M, Zhu R, et al. Practice recommendations for diagnosis and treatment of the most common forms of secondary hypertension. High Blood Press Cardiovasc Prev 2020;27:547–60. https://doi.org/10.1007/s40292-020-00415-9 

320. Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 2002;40:892–6. https://doi.org/10.1161/01.hyp.0000040261.30455.b6 

321. Jaffe G, Gray Z, Krishnan G, Stedman M, Zheng Y, Han J, et al. Screening rates for primary aldosteronism in resistant hypertension: a cohort study. Hypertension 2020;75:650–9. https://doi.org/10.1161/hypertensionaha.119.14359 

322. Hundemer GL, Imsirovic H, Vaidya A, Yozamp N, Goupil R, Madore F, et al. Screening rates for primary aldosteronism among individuals with hypertension plus hypokalemia: a population-based retrospective cohort study. Hypertension 2022;79:178–86. https://doi.org/10.1161/hypertensionaha.121.18118 

323. Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2018;6:41–50. https://doi.org/10.1016/s2213-8587(17)30319-4 

324. Savard S, Amar L, Plouin PF, Steichen O. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension 2013;62:331–6. https://doi.org/10.1161/hypertensionaha.113.01060 

325. Hiramatsu K, Yamada T, Yukimura Y, Komiya I, Ichikawa K, Ishihara M, et al. A screening test to identify aldosterone-producing adenoma by measuring plasma renin activity. Results in hypertensive patients. Arch Intern Med 1981;141:1589–93. https://doi.org/ 10.1001/archinte.1981.00340130033011 

326. Rossi GP. Primary aldosteronism: JACC state-of-the-art review. J Am Coll Cardiol 2019;74:2799–811. https://doi.org/10.1016/j.jacc.2019.09.057 

327. Rossi GP, Ceolotto G, Rossitto G, Maiolino G, Cesari M, Seccia TM. Effects of mineralocorticoid and AT1 receptor antagonism on the aldosterone-renin ratio in primary aldosteronism — the EMIRA study. J Clin Endocrinol Metab 2020;105:2060–7. https://doi.org/10.1210/clinem/dgaa080 

328. Rossi GP, Bisogni V, Bacca AV, Bacca AV, Belfiore A, Cesari M, et al. The 2020 Italian Society of Arterial Hypertension (SIIA) practical guidelines for the management of primary aldosteronism. Int J Cardiol Hypertens 2020;5:100029. https://doi.org/10.1016/j.ijchy.2020.100029 

329. Faconti L, Kulkarni S, Delles C, Kapil V, Lewis P, Glover M, et al. Diagnosis and management of primary hyperaldosteronism in patients with hypertension: a practical approach endorsed by the British and Irish Hypertension Society. J Hum Hypertens 2024;38:8–18. https://doi.org/10.1038/s41371-023-00875-1

330. Olin JW, Gornik HL, Bacharach JM, Biller J, Fine LJ, Gray BH, et al. Fibromuscular dysplasia: state of the science and critical unanswered questions: a scientific statement from the American Heart Association. Circulation 2014;129:1048–78. https://doi.org/10.1161/01.cir.0000442577.96802.8c 
331. Faconti L, Morselli F, Sinha M, Chrysochou C, Chowienczyk PJ. Fibromuscular dysplasia and hypertension — a statement on behalf of the British and Irish Hypertension Society. J Hum Hypertens 2021;35:1051–3. https://doi.org/10.1038/s41371-020-00456-6 
332. Gornik HL, Persu A, Adlam D, Aparicio LS, Azizi M, Boulanger M, et al. First international consensus on the diagnosis and management of bromuscular dysplasia. J Hypertens 2019;37:229–52. https://doi.org/10.1097/hjh.0000000000002019 
333. Abrishami A, Khajehdehi A, Chung F. A systematic review of screening questionnaires for obstructive sleep apnea. Can J Anaesth 2010;57:423–38. https://doi.org/10.1007/s12630-010-9280-x 
334. Chai-Coetzer CL, Antic NA, Hamilton GS, McArdle N, Wong K, Yee BJ, et al. Physician decision making and clinical outcomes with laboratory polysomnography or limited-channel sleep studies for obstructive sleep apnea: a randomized trial. Ann Intern Med 2017;166:332–40. https://doi.org/10.7326/m16-1301 
335. Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet 2005;366:665–75. https://doi.org/10.1016/s0140-6736(05)67139-5 
336. Lenders JWM, Kerstens MN, Amar L, Prejbisz A, Robledo M, Taieb D, et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertens 2020;38:1443–56. https://doi.org/10.1097/hjh.0000000000002438 
337. Mannelli M, Ianni L, Cilotti A, Conti A. Pheochromocytoma in Italy: a multicentric retrospective study. Eur J Endocrinol 1999;141:619–24. https://doi.org/10.1530/eje.0.1410619 
338. Neumann HPH, Young WF Jr, Eng C. Pheochromocytoma and paraganglioma. N Engl J Med 2019;381:552–65. https://doi.org/10.1056/NEJMra1806651 
339. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol 2018;6:51–9. https://doi.org/10.1016/s2213-8587(17)30367-4 
340. Jackson R, Lawes CM, Bennett DA, Milne RJ, Rod-gers A. Treatment with drugs to lower blood pressure and blood cholesterol based on an individual’s absolute cardiovascular risk. Lancet 2005;365:434–41. 
341. Yang L, Sun J, Zhao M, Liang Y, Bovet P, Xi B. Elevated blood pressure in childhood and hypertension risk in adulthood: a systematic review and meta-analysis. J Hypertens 2020;38:2346–55. https://doi.org/10.1097/hjh.0000000000002550 
342. Allen NB, Krefman AE, Labarthe D, Greenland P, Juonala M, Kähönen M, et al. Cardiovascular health trajectories from childhood through middle age and their association with subclinical atherosclerosis. JAMA Cardiol 2020;5:557–66. https://doi.org/10.1001/jamacardio.2020.0140 
343. de Simone G, Mancusi C, Hanssen H, Genovesi S, Lurbe E, Parati G, et al. Hypertension in children and adolescents. Eur Heart J 2022;43:3290–301. https://doi.org/10.1093/eurheartj/ehac328 
344. Falkstedt D, Koupil I, Hemmingsson T. Blood pressure in late adolescence and early incidence of coronary heart disease and stroke in the Swedish 1969 conscription cohort. J Hypertens 2008;26:1313–20. https://doi.org/10.1097/HJH.0b013e3282ffb17e 
345. Jacobs DR Jr, Woo JG, Sinaiko AR, Daniels SR, Ikonen J, Juonala M, et al. Childhood cardiovascular risk factors and adult cardiovascular events. N Engl J Med 2022;386:1877–88. https://doi.org/10.1056/NEJMoa2109191 
346. Oikonen M, Nuotio J, Magnussen CG, Viikari JSA, Taittonen L, Laitinen T, et al. Repeated blood pressure measurements in childhood in prediction of hypertension in adulthood. Hypertension 2016;67:41–7. https://doi.org/10.1161/hypertensionaha.115.06395 
347. Garcia-Lunar I, van der Ploeg HP, Fernández Alvira JM, van Nassau F, Castellano Vázquez JM, van der Beek AJ, et al. Effects of a comprehensive lifestyle intervention on cardiovascular health: the TANSNIP-PESA trial. Eur Heart J 2022;43:3732–45. https://doi.org/10.1093/eurheartj/ehac378 
348. Neal B, Wu Y, Feng X, Zhang R, Zhang Y, Shi J, et al. Effect of salt substitution on cardiovascular events and death. N Engl J Med 2021;385:1067–77. https://doi.org/10.1056/NEJMoa2105675 
349. He FJ, Tan M, Ma Y, MacGregor GA. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 2020;75:632–47. https://doi.org/10.1016/j.jacc.2019.11.055 
350. Ma Y, He FJ, Sun Q, Yuan C, Kieneker LM, Curhan GC, et al. 24-Hour urinary sodium and potassium excretion and cardiovascular risk. N Engl J Med 2022;386:252–63. https://doi.org/10.1056/NEJMoa2109794 
351. Ma H, Xue Q, Wang X, Li X, Franco OH, Li Y, et al. Adding salt to foods and hazard of premature mortality. Eur Heart J 2022;43:2878–88. https://doi.org/10.1093/ eurheartj/ehac208 
352. Huang L, Trieu K, Yoshimura S, Woodward M, Campbell N, Lackland D, et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 2020;368:m315. https://doi.org/10.1136/bmj.m315 
353. Graudal N, Hubeck-Graudal T, Jürgens G, Taylor RS. Dose-response relation between dietary sodium and blood pressure: a meta-regression analysis of 133 randomized controlled trials. Am J Clin Nutr 2019;109:1273–8. https://doi.org/10.1093/ajcn/nqy384 

354. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev 2020;12:CD004022. https://doi.org/10.1002/14651858.CD004022.pub5 

355. Filippini T, Malavolti M, Whelton PK, Naska A, Orsini N, Vinceti M. Blood pressure effects of sodium reduction: dose-response meta-analysis of experimental studies. Circulation 2021;143:1542–67. https://doi.org/10.1161/circulationaha.120.050371 

356. Gupta DK, Lewis CE, Varady KA, Su YR, Madhur MS, Lackland DT, et al. Effect of dietary sodium on blood pressure: a crossover trial. JAMA 2023;330:2258 . https://doi.org/10.1001/jama.2023.23651 

357. He J, Gu D, Chen J, Jaquish CE, Rao DC, Hixson JE, et al. Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study. J Hypertens 
2009;27:48–54. https://doi.org/10.1097/hjh.0b013e328316bb87 

358. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med 2001;344:3–10. https://doi.org/10.1056/nejm200101043440101 

359. MacGregor GA, Markandu ND, Sagnella GA, Sin-ger DR, Cappuccio FP. Double-blind study of three sodium intakes and long-term effects of sodium restriction in essential hypertension. Lancet 1989;2:1244–7. https://doi.org/10.1016/s0140-6736(89)91852-7 

360. Whelton PK, Appel LJ, Espeland MA, Applegate WB, Ettinger WH Jr, Kostis JB, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). JAMA 1998;279:839–46. https://doi.org/10.1001/jama.279.11.839 

361. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013;346:f1325. https://doi.org/10.1136/bmj.f1325 

362. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerová J, Richart T, et al. 
Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA 2011;305:1777–85. https://doi.org/10.1001/jama.2011.574 

363. Messerli FH, Hofstetter L, Syrogiannouli L, Rexhaj E, Siontis GCM, Seiler C, et al. Sodium intake, life expectancy, and all-cause mortality. Eur Heart J 2021;42:2103–12. https://doi.org/10.1093/eurheartj/ehaa947 

364. Mente A, O’Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet 2018;392:496–506. https://doi.org/10.1016/s0140-6736(18)31376-x 

365. Au Yeung SL, Schooling CM. Impact of urinary sodium on cardiovascular disease and risk factors: a 2 sample Mendelian randomization study. Clin Nutr 2021;40:1990–6. https://doi.org/10.1016/j.clnu.2020.09.018 

366. Zanetti D, Bergman H, Burgess S, Assimes TL, Bhalla V, Ingelsson E. Urinary albumin, sodium, and potassium and cardiovascular outcomes in the UK Biobank: observational and Mendelian randomization analyses. Hypertension 2020;75:714–22. https://doi.org/10.1161/hypertensionaha.119.14028 

367. Nolan P, McEvoy JW. Salt restriction for treatment of hypertension — current state and future directions. Curr Opin Cardiol 2024;39:61–7. https://doi.org/10.1097/hco.0000000000001098 

368. Yuan Y, Jin A, Neal B, Feng X, Qiao Q, Wang H, et al. Salt substitution and salt-supply restriction for lowering blood pressure in elderly care facilities: a cluster-randomized trial. Nat Med 2023;29:973–81. https://doi.org/10.1038/s41591-023-02286-8 

369. Lechner K, Schunkert H. Recommendations on sodium intake for cardiovascular health: conviction or evidence? Eur Heart J 2020;41:3374–5. https://doi.org/10.1093/ eurheartj/ehaa545 

370. O’Donnell M, Mente A, Alderman MH, Brady AJB, Diaz R, Gupta R, et al. Salt and cardiovascular disease: insufficient evidence to recommend low sodium intake. Eur Heart J 2020;41:3363–73. https://doi.org/10.1093/eurheartj/ehaa586 

371. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 2013;346:f1378. https://doi.org/10.1136/bmj.f1378 

372. O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med 2014;371:612–23. https://doi.org/10.1056/NEJMoa1311889 

373. Wouda RD, Boekholdt SM, Khaw KT, Wareham NJ, de Borst MH, Hoorn EJ, et al. Sex-specific associations between potassium intake, blood pressure, and cardiovascular outcomes: the EPIC-Norfolk study. Eur Heart J 2022;43:2867–75. https://doi.org/10.1093/eurheartj/ehac313 

374. Filippini T, Naska A, Kasdagli MI, Torres D, Lopes C, Carvalho C, et al. Potassium intake and blood pressure: a dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc 2020;9:e015719. https://doi.org/10.1161/jaha.119.015719 

375. O’Donnell M, Yusuf S, Vogt L, Mente A, Messerli FH. Potassium intake: the Cinderella electrolyte. Eur Heart J 2023;44:4925–34. https://doi.org/10.1093/eurheartj/ehad628 

376. Kidney Disease Outcomes Quality Initiative (K/DOQI). K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis 2004;43:S1–290. https://doi.org/10.1053/j.ajkd.2004.03.006 
377. Ndanuko RN, Ibrahim R, Hapsari RA, Neale EP, Raubenheimer D, Charlton KE. Association between the urinary sodium to potassium ratio and blood pressure in adults: a systema-
tic review and meta-analysis. Adv Nutr 2021;12:1751–67. https://doi.org/10.1093/advances/nmab036 
378. Messerli FH, O’Donnell M, Mente A, Yusuf S. Settling the controversy of salt substitutes and stroke: sodium reduction or potassium increase? Eur Heart J 2022;43:3365–7. https://doi.org/10.1093/eurheartj/ehac160 
379. Yin X, Paige E, Tian M, Li Q, Huang L, Yu J, et al. The proportion of dietary salt replaced with potassium-enriched salt in the SSaSS: implications for scale-up. Hypertension 2023;80:956–65. https://doi.org/10.1161/hypertensionaha.122.20115 
380. Xu X, Zeng L, Jha V, Cobb LK, Shibuya K, Appel LJ, et al. Potassium-enriched salt substitutes: a review of recommendations in clinical management guidelines. Hypertension 2024;81:400–14. https://doi.org/10.1161/hypertensionaha.123.21343 
381. Hanssen H, Boardman H, Deiseroth A, Moholdt T, Simonenko M, Kränkel N, et al. Personalized exercise prescription in the prevention and treatment of arterial hypertension: a consensus document from the European Association of Preventive Cardiology (EAPC) and the ESC Council on Hypertension. Eur J Prev Cardiol 2022;29:205–15. https://doi.org/10.1093/eurjpc/zwaa141 
382. Van Hoof R, Hespel P, Fagard R, Lijnen P, Staessen J, Amery A. Effect of endurance training on blood pressure at rest, during exercise and during 24 hours in sedentary men. Am J Cardiol 1989;63:945–9. https://doi.org/10.1016/0002-9149(89)90145-8 
383. MacDonald HV, Johnson BT, Huedo-Medina TB, Livingston J, Forsyth KC, Kraemer WJ, et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J Am Heart Assoc 2016;5:e003231. https://doi.org/10.1161/jaha.116.003231 
384. Hansford HJ, Parmenter BJ, McLeod KA, Wewege MA, Smart NA, Schutte AE, et al. The effectiveness and safety of isometric resistance training for adults with high blood pressure: a systematic review and meta-analysis. Hypertens Res 2021;44:1373–84. https://doi.org/10.1038/s41440-021-00720-3 
385. Van Hoof R, Macor F, Lijnen P, Staessen J, Thijs L, Vanhees L, et al. Effect of strength training on blood pressure measured in various conditions in sedentary men. Int J Sports Med 1996;17:415–22. https://doi.org/10.1055/s-2007-972871 
386. Leal JM, Galliano LM, Del Vecchio FB. Effectiveness of high-intensity interval training versus moderate-intensity continuous training in hypertensive patients: a systematic review and meta-analysis. Curr Hypertens Rep 2020;22:26. https://doi.org/10.1007/ s11906-020-1030-z 
387. Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS. The impact of physical activity on mortality in patients with high blood pressure: a systematic review. J Hypertens 2012;30:1277–88. https://doi.org/10.1097/HJH.0b013e3283544669 
388. Cuspidi C, Gherbesi E, Faggiano A, Sala C, Carugo S, Grassi G, et al. Masked hypertension and exaggerated blood pressure response to exercise: a review and meta-analysis. Diagnostics (Basel) 2023;13:1005. https://doi.org/10.3390/diagnostics13061005 
389. Mariampillai JE, Liestøl K, Kjeldsen SE, Prestgaard EE, Engeseth K, Bodegard J, et al. Exercise systolic blood pressure at moderate workload is linearly associated with coronary disease risk in healthy men. Hypertension 2020;75:44–50. https://doi.org/10.1161/hypertensionaha.119.13528 
390. Pelliccia A, Sharma S, Gati S, Bäck M, Börjesson M, Caselli S. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J 2021;42:17–96. https://doi.org/10.1093/eurheartj/ehaa605 
391. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020;54:1451–62. https://doi.org/10.1136/bjsports-2020-102955 
392. Saco-Ledo G, Valenzuela PL, Ramírez-Jiménez M, Morales JS, Castillo-García A, Blumenthal JA, et al. Acute aerobic exercise induces short-term reductions in ambulatory blood pressure in patients with hypertension: a systematic review and meta-analysis. Hypertension 2021;78:1844–58. https://doi.org/10.1161/hypertensionaha.121.18099 
393. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 2011;43:1334–59. https://doi.org/10.1249/MSS.0b013e318213fefb 
394. Edwards JJ, Deenmamode AHP, Griffiths M, Arnold O, Cooper NJ, Wiles JD, et al. Exercise training and resting blood pressure: a large-scale pairwise and network meta-analysis of randomised controlled trials. Br J Sports Med 2023;57:1317–26. https://doi.org/10.1136/bjsports-2022-106503 
395. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and trai-ning: a scientific statement from the American Heart Association. Circulation 2013;128:873–934. https://doi.org/10.1161/CIR.0b013e31829b5b44 
396. Craft BB, Carroll HA, Lustyk MK. Gender differences in exercise habits and quality of life reports: assessing the moderating effects of reasons for exercise. Int J Lib Arts Soc Sci 2014;2:65–76. 
397. Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP. Visceral obesity: the link among in ammation, hypertension, and cardiovascular disease. Hypertension 2009;53:577–84. https://doi.org/10.1161/hypertensionaha.108.110320 

398. Chandra A, Neeland IJ, Berry JD, Ayers CR, Rohatgi A, Das SR, et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas heart study. J Am Coll Cardiol 2014;64:997–1002. https://doi.org/10.1016/j.jacc. 2014.05.057 

399. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 2003;42:878–84. https://doi.org/10.1161/01.Hyp.0000094221.86888.Ae 

400. Haase CL, Lopes S, Olsen AH, Satylganova A, Schnecke V, McEwan P. Weight loss and risk reduction of obesity-related outcomes in 0.5 million people: evidence from a UK primary care database. Int J Obes (Lond) 2021;45:1249–58. https://doi.org/10.1038/ s41366-021-00788-4 

401. Moore LL, Visioni AJ, Qureshi MM, Bradlee ML, Ellison RC, D’Agostino R. Weight loss in overweight adults and the long-term risk of hypertension: the Framingham study. Arch Intern Med 2005;165:1298–303. https://doi.org/10.1001/archinte.165.11.1298 

402. Zomer E, Gurusamy K, Leach R, Trimmer C, Lobstein T, Morris S, et al. Interventions that cause weight loss and the impact on cardiovascular risk factors: a systematic review and meta-analysis. Obes Rev 2016;17:1001–11. https://doi.org/10.1111/obr.12433 

403. Wing RR, Espeland MA, Clark JM, Hazuda HP, Know-ler WC, Pownall HJ, et al. Association of weight loss maintenance and weight regain on 4-year changes in CVD risk factors: the action for health in diabetes (Look AHEAD) clinical trial. Diabetes Care 2016;39:1345–55. https://doi.org/10.2337/dc16-0509 

404. Ma C, Avenell A, Bolland M, Hudson J, Stewart F, Ro-bertson C, et al. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ 2017;359:j4849. https://doi.org/10.1136/bmj.j4849 

405. Semlitsch T, Krenn C, Jeitler K, Berghold A, Horvath K, Siebenhofer A. Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst Rev 2021;2:CD008274. https://doi.org/10.1002/14651858.CD008274.pub4 

406. Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Coday M, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013;369:145–54. https://doi.org/10.1056/NEJMoa1212914 

407. Pagidipati NJ, Phelan M, Page C, Clowse M, Henao R, Peterson ED, et al. The importance of weight stabilization amongst those with overweight or obesity: results from a large health care system. Prev Med Rep 2021;24:101615. https://doi.org/10.1016/j. pmedr.2021.101615 

408. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Me-diterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018;378:e34. https://doi.org/10.1056/NEJMoa1800389 

409. Delgado-Lista J, Alcala-Diaz JF, Torres-Peña JD, Quintana-Navarro GM, Fuentes F, Garcia-Rios A, et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet 2022;399:1876–85. https://doi.org/10.1016/s0140-6736(22)00122-2 

410. Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin P-H, et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med 2010;170:126–35. https://doi.org/10.1001/archinternmed.2009.470 

411. Juraschek SP, Miller ER III, Weaver CM, Appel LJ. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol 2017;70:2841–8. https://doi.org/10.1016/j.jacc.2017.10.011 

412. Gay HC, Rao SG, Vaccarino V, Ali MK. Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension 2016;67:733–9. https://doi.org/10.1161/hypertensionaha.115.06853 

413. Siebenhofer A, Winterholer S, Jeitler K, Horvath K, Berghold A, Krenn C, et al. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst Rev 2021;1:CD007654. https://doi.org/10.1002/14651858. CD007654.pub5 

414. Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022;21:201–23. https://doi.org/10.1038/s41573-021-00337-8 

415. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021;384:989–1002. https://doi.org/10.1056/NEJMoa2032183 

416. Davies M, Færch L, Jeppesen OK, Pakseresht A, Pedersen SD, Perreault L, et al. Semaglutide 2-4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebocontrolled, phase 3 trial. Lancet 2021;397:971–84. https://doi.org/10.1016/s0140-6736(21)00213-0 

417. Tasnim S, Tang C, Musini VM, Wright JM. Effect of alcohol on blood pressure. Cochrane Database Syst Rev 2020;7:CD012787. https://doi.org/10.1002/14651858. CD012787.pub2 

418. Liu F, Liu Y, Sun X, Yin Z, Li H, Deng K, et al. Race- and sex-specific association between alcohol consumption and hypertension in 22 cohort studies: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2020;30:1249–59. https://doi.org/10.1016/j.numecd.2020.03.018

419. Griswold MG, Fullman N, Hawley C, Arian N, Zimsen SRM, Tymeson HD, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018;392:1015–35. https://doi.org/10.1016/s0140-6736(18)31310-2 
420. D’Elia L, La Fata E, Galletti F, Scal L, Strazzullo P. Coffee consumption and risk of hypertension: a dose-response meta-analysis of prospective studies. Eur J Nutr 2019;58:271–80. https://doi.org/10.1007/s00394-017-1591-z 
421. Hodgson JM, Puddey IB, Woodman RJ, Mulder TPJ, Fuchs D, Scott K, et al. Effects of black tea on blood pressure: a randomized controlled trial. Arch Intern Med 2012;172:186–8. https://doi.org/10.1001/archinte.172.2.186 
422. Shah SA, Chu BW, Lacey CS, Riddock IC, Lee M, Dargush AE. Impact of acute energy drink consumption on blood pressure parameters: a meta-analysis. Ann Pharmacother 2016;50:808–15. https://doi.org/10.1177/1060028016656433 
423. Shah SA, Szeto AH, Farewell R, Shek A, Fan D, Quach KN, et al. Impact of high volume energy drink consumption on electrocardiographic and blood pressure parameters: a randomized trial. J Am Heart Assoc 2019;8:e011318. https://doi.org/10.1161/jaha.118.011318 
424. Basrai M, Schweinlin A, Menzel J, Mielke H, Weikert C, Dusemund B, et al. Energy drinks induce acute cardiovascular and metabolic changes pointing to potential risks for young adults: a randomized controlled trial. J Nutr 2019;149:441–50. https://doi.org/10.1093/jn/nxy303 
425. Fung TT, Malik V, Rexrode KM, Manson JE, Willett WC, Hu FB. Sweetened beverage consumption and risk of co-ronary heart disease in women. Am J Clin Nutr 2009;89:1037–42. https://doi.org/10.3945/ajcn.2008.27140 
426. Mullee A, Romaguera D, Pearson-Stuttard J, Viallon V, Stepien M, Freisling H, et al. Association between soft drink consumption and mortality in 10 European countries. JAMA Intern Med 2019;179:1479–90. https://doi.org/10.1001/jamainternmed. 2019.2478 
427. Farhangi MA, Nikniaz L, Khodarahmi M. Sugar-sweetened beverages increases the risk of hypertension among children and adolescence: a systematic review and dose-response meta-analysis. J Transl Med 2020;18:344. https://doi.org/10.1186/s12967-020-02511-9 
428. Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. JAMA 2003;290:86–97. https://doi.org/10.1001/jama.290.1.86 
429. Anthonisen NR, Skeans MA, Wise RA, Manfreda J, Kanner RE, Connett JE. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 2005;142:233–9. https://doi.org/10.7326/0003-4819-142-4-200502150-00005 
430. Thomson B, Emberson J, Lacey B, Lewington S, Peto R, Jemal A. Association between smoking, smoking cessation, and mortality by race, ethnicity, and sex among US adults. JAMA Netw Open 2022;5:e2231480. https://doi.org/10.1001/jamanetworkopen.2022.31480 
431. Yang JJ, Yu D, Shu XO, Wen W, Rahman S, Abe S. Reduction in total and major cause-specific mortality from tobacco smoking cessation: a pooled analysis of 16 population-based cohort studies in Asia. Int J Epidemiol 2022;50:2070–81. https://doi.org/10.1093/ije/dyab087 
432. Martinez-Morata I, Sanchez TR, Shimbo D, Navas-Acien A. Electronic cigarette use and blood pressure endpoints: a systematic review. Curr Hypertens Rep 2020;23:2. https://doi.org/10.1007/s11906-020-01119-0 
433. Kim SY, Jeong SH, Joo HJ, Park M, Park E-C, Kim JH, et al. High prevalence of hypertension among smokers of conventional and e-cigarette: using the nationally representative community dwelling survey. Front Public Health 2022;10:919585. https://doi.org/10.3389/fpubh.2022.919585 
434. Groppelli A, Giorgi DM, Omboni S, Parati G, Mancia G. Persistent blood pressure increase induced by heavy smoking. J Hypertens 1992;10:495–9. https://doi.org/10.1097/00004872-199205000-00014 
435. Primatesta P, Falaschetti E, Gupta S, Marmot MG, Poulter NR. Association between smoking and blood pressure: evidence from the health survey for England. Hypertension 2001;37:187–93. https://doi.org/10.1161/01.hyp.37.2.187 
436. Stead LF, Buitrago D, Preciado N, Sanchez G, Hartmann-Boyce J, Lancaster T. Physician advice for smoking cessation. Cochrane Database Syst Rev 2013;2013:CD000165. https://doi.org/10.1002/14651858.CD000165.pub4 
437. Rasmussen M, Lauridsen SV, Pedersen B, Backer V, Tønnesen H. Intensive versus short face-to-face smoking cessation interventions: a meta-analysis. Eur Respir Rev 2022;31:220063. https://doi.org/10.1183/16000617.0063-2022 
438. Filippou CD, Thomopoulos CG, Kouremeti MM, Sotiropoulou LI, Nihoyannopoulos PI, Tousoulis DM, et al. Mediterranean diet and blood pressure reduction in adults with and without hypertension: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2021;40:3191–200. https://doi.org/10.1016/j.clnu.2021.01.030 
439. Cowell OR, Mistry N, Deighton K, Matu J, Griffiths A, Minihane AM, et al. Effects of a Mediterranean diet on blood pressure: a systematic review and meta-analysis of randomized controlled trials and observational studies. J Hypertens 2021;39:729–39. https://doi.org/10.1097/hjh.0000000000002667 
440. Roerecke M, Tobe SW, Kaczorowski J, Bacon SL, Vafaei A, Hasan OSM, et al. Sex-specific associations between alcohol consumption and incidence of hypertension: a systematic review and meta-analysis of cohort studies. J Am Heart Assoc 2018;7:e008202. https://doi.org/10.1161/jaha.117.008202 

441. Ding C, O’Neill D, Bell S, Stamatakis E, Britton A. Association of alcohol consumption with morbidity and mortality in patients with cardiovascular disease: original data and meta-ana-lysis of 48,423 men and women. BMC Med 2021;19:167. https://doi.org/10.1186/s12916-021-02040-2 

442. Marklund M, Singh G, Greer R, Cudhea F, Matsushita K, Micha R, et al. Estimated population wide benefits and risks in China of lowering sodium through potassium enriched salt substitution: modelling study. BMJ 2020;369:m824. https://doi.org/10.1136/bmj.m824 

443. Pinho-Gomes AC, Azevedo L, Copland E, Canoy D, Na-zarzadeh M, Ramakrishnan R, et al. Blood pressure-lowering treatment for the prevention of cardiovascular events in patients with atrial brillation: an individual participant data meta-analysis. PLoS Med 2021;18:e1003599. https://doi.org/10.1371/journal.pmed.1003599 

444. Bidel Z, Nazarzadeh M, Canoy D, Copland E, Gerdts E, Woodward M, et al. Sex-specific effects of blood pressure lowering pharmacotherapy for the prevention of cardiovascular disease: an individual participant-level data meta-analysis. Hypertension 2023;80:2293–302. https://doi.org/10.1161/hypertensionaha.123.21496 

445. Nazarzadeh M, Bidel Z, Canoy D, Copland E, Bennett DA, Dehghan A, et al. Blood pressure-lowering treatment for prevention of major cardiovascular diseases in people with and without type 2 diabetes: an individual participant-level data meta-analysis. Lancet Diabetes Endocrinol 2022;10:645–54. https://doi.org/10.1016/s2213-8587(22)00172-3 

446. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on out-come incidence in hypertension: 4. Effects of various classes of antihypertensive drugs — overview and meta-analyses. J Hypertens 2015;33:195–211. https://doi.org/10.1097/hjh.0000000000000447 

447. Ishani A, Cushman WC, Leatherman SM, Lew RA, Woods P, Glassman PA, et al. Chlorthalidone vs. hydrochlorothiazide for hypertension-cardiovascular events. N Engl J Med 2022;387:2401–10. https://doi.org/10.1056/NEJMoa2212270 

448. Ziff OJ, Samra M, Howard JP, Bromage DI, Ruschitzka F, Francis DP, et al. Beta-blocker efficacy across different cardiovascular indications: an umbrella review and meta-analytic assessment. BMC Med 2020;18:103. https://doi.org/10.1186/s12916-020-01564-3 

449. Thomopoulos C, Bazoukis G, Tsioufis C, Mancia G. Beta-blockers in hypertension: overview and meta-analysis of randomized outcome trials. J Hypertens 2020;38:1669–81. https://doi.org/10.1097/hjh.0000000000002523 

450. Mancia G, Kjeldsen SE, Kreutz R, Pathak A, Grassi G, Esler M. Individualized beta-blocker treatment for high blood pressure dictated by medical comorbidities: indications beyond the 2018 European Society of Cardiology/European Society of Hypertension Guidelines. Hypertension 2022;79:1153–66. https://doi.org/10.1161/ hypertensionaha.122.19020 

451. Bradley HA, Wiysonge CS, Volmink JA, Mayosi BM, Opie LH. How strong is the evidence for use of beta-blockers as first-line therapy for hypertension? Systematic review and meta-analysis. J Hypertens 2006;24:2131–41. https://doi.org/10.1097/01.hjh. 0000249685.58370.28 

452. Wiysonge CS, Bradley HA, Volmink J, Mayosi BM, Opie LH. Beta-blockers for hypertension. Cochrane Database Syst Rev 2017;1:CD002003. https://doi.org/10.1002/14651858.CD002003.pub5 

453. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007;369:201–7. https://doi.org/10.1016/s0140-6736(07)60108-1 

454. Bangalore S, Parkar S, Grossman E, Messerli FH. A meta-analysis of 94,492 patients with hypertension treated with beta blockers to determine the risk of new-onset diabetes mellitus. Am J Cardiol 2007;100:1254–62. https://doi.org/10.1016/j.amjcard.2007.05.057 

455. Laurent S, Briet M, Boutouyrie P. Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension 2009;54:388–92. https://doi.org/10.1161/hypertensionaha.109.133116 

456. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med 2003;115:41–6. https://doi.org/10.1016/s0002-9343(03)00158-x 

457. Zanchetti A, Bond MG, Hennig M, Neiss A, Mancia G, Dal Palù C, et al. Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation 2002;106:2422–7. https://doi.org/10.1161/01.cir.0000039288.86470.dd 

458. Schiffrin EL, Deng LY. Comparison of effects of angiotensin I-converting enzyme inhibition and beta-blockade for 2 years on function of small arteries from hypertensive patients. Hypertension 1995;25:699–703. https://doi.org/10.1161/01.hyp.25.4.699 

459. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 2015;386:2059–68. https://doi.org/10.1016/s0140-6736(15)00257-3 

460. Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J 2022;43:474–84. https://doi.org/10.1093/eurheartj/ehab777 
461. Agarwal R, Ruilope LM, Ruiz-Hurtado G, Haller H, Schmieder RE, Anker SD, et al. Effect of finerenone on ambulatory blood pressure in chronic kidney disease in type 2 diabetes. J Hypertens 2023;41:295–302. https://doi.org/10.1097/hjh.0000000000003330 
462. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 2020;383:2219–29. https://doi.org/10.1056/NEJMoa2025845 
463. The ALLHAT Officers Coordinators for the ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000;283:1967–75. https://doi.org/10.1001/jama.283.15.1967 
464. Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 2010;375:1255–66. https://doi.org/10.1016/s0140-6736(09)61966-8 
465. McMurray JJ, Packer M, Desai AS, Gong J, Lefko-witz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014;371:993–1004. https://doi.org/10.1056/NEJMoa1409077 
466. Rakugi H, Kario K, Yamaguchi M, Sasajima T, Gotou H, Zhang J. Efficacy of sacubitril/valsartan versus olmesartan in Japanese patients with essential hypertension: a randomized, double-blind, multicenter study. Hypertens Res 2022;45:824–33. https://doi.org/10.1038/s41440-021-00819-7 
467. Jackson AM, Jhund PS, Anand IS, Düngen H-D, Lam CSP, Lefkowitz MP, et al. Sacubitril-valsartan as a treatment for apparent resistant hypertension in patients with heart failure and preserved ejection fraction. Eur Heart J 2021;42:3741–52. https://doi.org/10.1093/eurheartj/ehab499 
468. Kario K, Sun N, Chiang FT, Supasyndh O, Baek SH, Inubushi-Molessa A, et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension 2014;63:698–705. https://doi.org/10.1161/hypertensionaha.113.02002 
469. Williams B, Cockcroft JR, Kario K, Zappe DH, Brunel PC, Wang Q, et al. Effects of sacubitril/valsartan versus olme-sartan on central hemodynamics in the elderly with systolic hypertension: the PARAMETER study. Hypertension 2017;69:411–20. https://doi.org/10.1161/hypertensionaha.116.08556 
470. Herrington WG, Savarese G, Haynes R, Marx N, Mellbin L, Lund LH, et al. Cardiac, renal, and metabolic effects of sodium-glucose co-transporter 2 inhibitors: a position paper from the European Society of Cardiology ad-hoc task force on sodium-glucose co-transporter 2 inhibitors. Eur J Heart Fail 2021;23:1260–75. https://doi.org/10.1002/ejhf.2286 
471. Gupta R, Maitz T, Egeler D, Mehta A, Nyaeme M, Hajra A, et al. SGLT2 inhibitors in hypertension: role beyond diabetes and heart failure. Trends Cardiovasc Med 2022;33:479–86. https://doi.org/10.1016/j.tcm.2022.05.005 
472. Kario K, Ferdinand KC, Vongpatanasin W. Are SGLT2 inhibitors new hypertension drugs? Circulation 2021;143:1750–3. https://doi.org/10.1161/circulationaha.121.053709 
473. Yan C, Thijs L, Cao Y, Trenson S, Zhang Z-Y, Janssens S, et al. Opportunities of antidiabetic drugs in cardiovascular medicine: a meta-analysis and perspectives for trial design. Hypertension 2020;76:420–31. https://doi.org/10.1161/hypertensionaha.120.14791 
474. Freeman MW, Halvorsen YD, Marshall W, Pater M, Isaacsohn J, Pearce C, et al. Phase 2 trial of baxdrostat for treatment-resistant hypertension. N Engl J Med 2023;388:395–405. https://doi.org/10.1056/NEJMoa2213169 
475. Laffin LJ, Rodman D, Luther JM, Vaidya A, Weir MR, Rajicic N, et al. Aldosterone synthase inhibition with lorundrostat for uncontrolled hypertension: the target-HTN randomized clinical trial. JAMA 2023;330:1140–50. https://doi.org/10.1001/jama.2023. 16029 
476. Schlaich MP, Bellet M, Weber MA, Danaietash P, Bakris GL, Flack JM, et al. Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): a multicentre, blinded, randomised, parallel-group, phase 3 trial. Lancet 2022;400:1927–37. https://doi.org/10.1016/s0140-6736(22)02034-7 
477. Desai AS, Webb DJ, Taubel J, Casey S, Cheng Y, Robbie GJ, et al. Zilebesiran, an RNA interference therapeutic agent for hypertension. N Engl J Med 2023;389:228–38. https://doi.org/10.1056/NEJMoa2208391 
478. Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ 2003; 326:1427. https://doi.org/10.1136/bmj.326.7404.1427 
479. Mahmud A, Feely J. Low-dose quadruple antihypertensive combination: more efficacious than individual agents — a preliminary report. Hypertension 2007;49:272–5. https://doi.org/10.1161/01.HYP.0000254479.66645.a3 
480. Wald DS, Law M, Morris JK, Bestwick JP, Wald NJ. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med 2009;122:290–300. https://doi.org/10.1016/j.amjmed.2008.09.038 
481. Chow CK, Thakkar J, Bennett A, Hillis G, Burke M, Usherwood T, et al. Quarter-dose quadruple combination therapy for initial treatment of hypertension: placebo-controlled, crossover, randomised trial and systematic review. Lancet 2017;389:1035–42. https://doi.org/10.1016/s0140-6736(17)30260-x 

482. Chow CK, Atkins ER, Hillis GS, Nelson MR, Reid CM, Schlaich MP, et al. Initial treatment with a single pill containing quadruple combination of quarter doses of blood pressure medicines versus standard dose monotherapy in patients with hypertension (QUARTET): a phase 3, randomised, double-blind, active-controlled trial. Lancet 2021;398:1043–52. https://doi.org/10.1016/s0140-6736(21)01922-x 

483. Webster R, Salam A, de Silva HA, Selak V, Stepien S, Rajapakse S, et al. Fixed low-dose triple combination antihypertensive medication vs usual care for blood pressure control in patients with mild to moderate hypertension in Sri Lanka: a randomized clinical trial. JAMA 2018;320:566–79. https://doi.org/10.1001/jama.2018.10359 

484. MacDonald TM, Williams B, Webb DJ, Morant S, Caulfield M, Cruickshank JK, et al. Combination therapy is superior to sequential monotherapy for the initial treatment of hypertension: a double-blind randomized controlled trial. J Am Heart Assoc 2017;6:e006986. https://doi.org/10.1161/jaha.117.006986 

485. Salam A, Kanukula R, Atkins E, Wang X, Islam S, Kishore SP, et al. Efficacy and safety of dual combination therapy of blood pressure-lowering drugs as initial treatment for hypertension: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2019;37:1768–74. https://doi.org/10.1097/hjh.0000000000002096 

486. Zhang ZY, Yu YL, Asayama K, Hansen TW, Maestre GE, Staessen JA. Starting antihypertensive drug treatment with combination therapy: controversies in hypertension — con side of the argument. Hypertension 2021;77:788–98. https://doi.org/10.1161/hypertensionaha.120.12858 

487. Kahan T. Low-dose combination of blood pressure-lowering medicines. Lancet 2021;398:1022–3. https://doi.org/10.1016/s0140-6736(21)01964-4 

488. Rea F, Corrao G, Merlino L, Mancia G. Initial antihypertensive treatment strategies and therapeutic inertia. Hypertension 2018;72:846–53. https://doi.org/10.1161/hypertensionaha.118.11308 

489. Egan BM, Bandyopadhyay D, Shaftman SR, Wagner CS, Zhao Y, Yu-Isenberg KS. Initial monotherapy and combination therapy and hypertension control the first year. Hypertension 2012;59:1124–31. https://doi.org/10.1161/hypertensionaha.112.194167 

490. Sundström J, Lind L, Nowrouzi S, Hagström E, Held C, Lytsy P, et al. Heterogeneity in blood pressure response to 4 antihypertensive drugs: a randomized clinical trial. JAMA 2023;329:1160–9. https://doi.org/10.1001/jama.2023.3322 

491. Tsioufis K, Kreutz R, Sykara G, van Vugt J, Hassan T. Impact of single-pill combination therapy on adherence, blood pressure control, and clinical outcomes: a rapid evidence assessment of recent literature. J Hypertens 2020;38:1016–28. https://doi.org/10.1097/hjh.0000000000002381 

492. Parati G, Kjeldsen S, Coca A, Cushman WC, Wang J. Adherence to single-pill versus free-equivalent combination therapy in hypertension: a systematic review and meta-analysis. Hypertension 2021;77:692–705. https://doi.org/10.1161/hypertensionaha.120.15781 

493. Egan BM, Kjeldsen SE, Narkiewicz K, Kreutz R, Burnier M. Single-pill combinations, hypertension control and clinical outcomes: potential, pitfalls and solutions. Blood Press 2022;31:164–8. https://doi.org/10.1080/08037051.2022.2095254 

494. Yusuf S, Joseph P, Dans A, Gao P, Teo K, Xavier D, et al. Polypill with or without aspirin in persons without cardiovascular disease. N Engl J Med 2021;384:216–28. https://doi.org/10.1056/NEJMoa2028220 

495. Roshandel G, Khoshnia M, Poustchi H, Hemming K, Kamangar F, Gharavi A, et al. Effectiveness of polypill for primary and secondary prevention of cardiovascular diseases (PolyIran): a pragmatic, cluster-randomised trial. Lancet 2019;394:672–83. https://doi.org/10.1016/s0140-6736(19)31791-x 

496. Joseph P, Roshandel G, Gao P, Pais P, Lonn E, Xavier D, et al. Fixed-dose combination therapies with and without aspirin for primary prevention of cardiovascular disease: an individual participant data meta-analysis. Lancet 2021;398:1133–46. https://doi.org/10.1016/s0140-6736(21)01827-4 

497. van Vark LC, Bertrand M, Akkerhuis KM, Brugts JJ, Fox K, Mourad J-J, et al. Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: a meta-analysis of randomized clinical trials of renin-angiotensin-aldosterone system inhibitors involving 158 998 patients. Eur Heart J 2012;33:2088–97. https://doi.org/10.1093/eurheartj/ehs075 

498. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 2012;367:2204–13. https://doi.org/10.1056/NEJMoa1208799 

499. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 2013;369:1892–903. https://doi.org/10.1056/NEJMoa1303154 

500. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008;358:1547–59. https://doi.org/10.1056/NEJMoa0801317 

501. Gupta AK, Arshad S, Poulter NR. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension 2010;55:399–407. https://doi.org/10.1161/hypertensionaha.109.139816 

502. Gnanenthiran SR, Wang N, Di Tanna GL, Salam A, Webster R, de Silva HA, et al. Association of low-dose triple combination therapy vs usual care with time at target blood pressure: a secondary analysis of the TRIUMPH randomized clinical trial. JAMA Cardiol 2022;7:645–50. https://doi.org/10.1001/jamacardio.2022.0471

503. Tam TS, Wu MH, Masson SC, Tsang MP, Stabler SN, Kinkade A, et al. Eplerenone for hypertension. Cochrane Database Syst Rev 2017;2:CD008996. https://doi.org/10.1002/14651858.CD008996.pub2

504. Pedersen ME, Cockcroft JR. The vasodilatory beta-blockers. Curr Hypertens Rep 2007;9:269–77. https://doi.org/10.1007/s11906-007-0050-2

505. Sica DA. Minoxidil: an underused vasodilator for resistant or severe hypertension. J Clin Hypertens (Greenwich) 2004;6:283–7. https://doi.org/10.1111/j.1524-6175.2004.03585.x 
506. Muñoz D, Uzoije P, Reynolds C, Miller R, Walkley D, Pappalardo S, et al. Polypill for cardiovascular disease prevention in an underserved population. N Engl J Med 2019;381:1114–23. https://doi.org/10.1056/NEJMoa1815359

507. Castellano JM, Pocock SJ, Bhatt DL, Quesada AJ, Owen R, Fernandez-Ortiz A, et al. Polypill strategy in secondary cardiovascular prevention. N Engl J Med 2022;387:967–77. https://doi.org/10.1056/NEJMoa2208275

508. González-Juanatey JR, Cordero A, Castellano JM, Masana L, Dalmau R, Ruiz E, et al. The CNIC-polypill reduces recurrent major cardiovascular events in real-life secondary prevention patients in Spain: the NEPTUNO study. Int J Cardiol 2022;361:116–23. https://doi.org/10.1016/j.ijcard.2022.05.015 
509. Jowett S, Barton P, Roalfe A, Fletcher K, Hobbs FDR, McManus RJ, et al. Cost-effectiveness analysis of use of a polypill versus usual care or best practice for primary prevention in people at high risk of cardiovascular disease. PLoS One 2017;12:e0182625. https://doi.org/10.1371/journal.pone.0182625 
510. McManus RJ, Mant J, Bray EP, Holder R, Jones MI, Greenfield S, et al. Telemonitoring and self-management in the control of hypertension (TASMINH2): a randomised controlled trial. Lancet 2010;376:163–72. https://doi.org/10.1016/s0140-6736(10)60964-6 
511. Clark CE, Smith LF, Taylor RS, Campbell JL. Nurse led interventions to improve control of blood pressure in people with hypertension: systematic review and meta-analysis. BMJ 2010;341:c3995. https://doi.org/10.1136/bmj.c3995 
512. Mackenzie IS, Rogers A, Poulter NR, Williams B, Brown MJ, Webb DJ, et al. Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): a prospective, randomised, open-label, blinded-endpoint clinical trial. Lancet 2022;400:1417–25. https://doi.org/10.1016/s0140-6736(22)01786-x 
513. Conn VS, Ruppar TM, Chase JA, Enriquez M, Cooper PS. Interventions to improve medication adherence in hypertensive patients: systematic review and meta-analysis. Curr Hypertens Rep 2015;17:94. https://doi.org/10.1007/s11906-015-0606-5 
514. Corrao G, Parodi A, Zambon A, Heiman F, Filippi A, Cricelli C, et al. Reduced discontinuation of antihypertensive treatment by two-drug combination as first step. Evidence from daily life practice. J Hypertens 2010;28:1584–90. https://doi.org/10. 1097/HJH.0b013e328339f9fa 
515. Krieger EM, Drager LF, Giorgi DMA, Pereira AC, Barreto-Filho JAS, Nogueira AR, et al. Spironolactone versus clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT randomized study (resistant hypertension optimal treatment). Hypertension 2018;71:681–90. https://doi.org/10.1161/hypertensionaha.117.10662 
516. Williams B, MacDonald TM, Morant SV, Webb DJ, Sever P, McInnes GT, et al. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol 2018;6:464–75. https://doi.org/10.1016/s2213-8587(18)30071-8 
517. Mann JF, Schmieder RE, McQueen M, Dyal L, Schu-macher H, Pogue J, et al. Renal out-comes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET 
study): a multicentre, randomised, double-blind, controlled trial. Lancet 2008;372:547–53. https://doi.org/10.1016/s0140-6736(08)61236-2 
518. Jones DW, Whelton PK, Allen N, Clark D III, Gidding SS, Muntner P, et al. Management of stage 1 hypertension in adults with a low 10-year risk for cardiovascular disease: lling a guidance gap: a scientific statement from the American Heart Association. Hypertension 2021;77:e58–67. https://doi.org/10.1161/hyp.0000000000000195 
519. Ali DH, Kiliç B, Hart HE, Bots ML, Biermans MCJ, Spiering W, et al. Therapeutic inertia in the management of hypertension in primary care. J Hypertens 2021;39:1238–45. https://doi.org/10.1097/hjh.0000000000002783 
520. Appel LJ, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, Elmer PJ, et al. Effects of comprehensive lifestyle modi cation on blood pressure control: main results of the PREMIER clinical trial. JAMA 2003;289:2083–93. https://doi.org/10.1001/jama. 289.16.2083 
521. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER, et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 2005;294:2455–64. https://doi.org/10. 1001/jama.294.19.2455 
522. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence. 12. Effects in individuals with high-normal and normal blood pressure: overview and meta-analyses of randomized trials. J Hypertens 2017;35:2150–60. https://doi.org/10.1097/hjh.0000000000001547 
523. Williamson JD, Supiano MA, Applegate WB, Berlo-witz DR, Campbell RC, Chertow GM, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: a randomized clinical trial. JAMA 2016;315:2673–82. https://doi.org/10.1001/jama.2016.7050 
524. Beckett N, Peters R, Leonetti G, Duggan J, Fagard R, Thijs L, et al. Subgroup and perprotocol analyses from the hypertension in the very elderly trial. J Hypertens 2014;32:1478–87; discussion 1487. https://doi.org/10.1097/hjh.0000000000000195 

525. Jowett S, Kodabuckus S, Ford GA, Hobbs FDR, Lown M, Mant J, et al. Cost-effectiveness of antihypertensive deprescribing in primary care: a Markov modelling study using data from the OPTiMISE trial. Hypertension 2022;79:1122–31. https://doi.org/10.1161/hypertensionaha.121.18726 

526. Odden MC, McClure LA, Sawaya BP, White CL, Peralta CA, Field TS, et al. Achieved 
blood pressure and outcomes in the secondary prevention of small subcortical strokes trial. Hypertension 2016;67:63–9. https://doi.org/10.1161/hypertensionaha.115.06480 

527. Chen T, Shao F, Chen K, Wang Y, Wu Z, Wang Y, et al. Time to clinical benefit of intensive blood pressure lowering in patients 60 years and older with hypertension: a secondary analysis of randomized clinical trials. JAMA Intern Med 2022;182:660–7. https://doi.org/10.1001/jamainternmed.2022.1657 

528. Neaton JD, Grimm RH Jr, Prineas RJ, Stamler J, Grandits GA, Elmer PJ, et al. Treatment of mild hypertension study. Final results. Treatment of mild hypertension study research group. JAMA 1993;270:713–24. https://doi.org/10.1001/jama.1993.03510060059034 

529. Wu J, Kraja AT, Oberman A, Lewis C, Ellison R, Arnett D, et al. A summary of the effects of antihypertensive medications on measured blood pressure. Am J Hypertens 2005;18:935–42. https://doi.org/10.1016/j.amjhyper.2005.01.011 
530. Canoy D, Copland E, Nazarzadeh M, Ramakrishnan R, Pinho-Gomes A-C, Salam A, et al. Antihypertensive drug effects on long-term blood pressure: an individual-level data meta-analysis of randomised clinical trials. Heart 2022;108:1281–9. https://doi.org/10.1136/heartjnl-2021-320171 

531. Paz MA, de-La-Sierra A, Sáez M, Barceló MA, Rodríguez JJ, Castro S, et al. Treatment efficacy of anti-hypertensive drugs in monotherapy or combination: ATOM systematic review and meta-analysis of randomized clinical trials according to PRISMA statement. Medicine (Baltimore) 2016;95:e4071. https://doi.org/10.1097/md.0000000000004071 

532. Morales-Salinas A, Kones R. Concerning the degradation of β-blocker use in the 2018 ESC/ESH hypertension guidelines. Eur Heart J 2019;40:2091. https://doi.org/10.1093/eurheartj/ehz125 

533. Lindholm LH, Carlberg B, Samuelsson O. Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet 2005;366:1545–53. https://doi.org/10.1016/s0140-6736(05)67573-3 

534. Larochelle P, Tobe SW, Lacourcière Y. β-Blockers in hypertension: studies and meta-analyses over the years. Can J Cardiol 2014;30:S16–22. https://doi.org/10.1016/ j.cjca.2014.02.012 

535. Reboussin DM, Allen NB, Griswold ME, Guallar E, Hong Y, Lackland DT, et al. Systematic review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018;71:e116–35. https://doi.org/10.1161/hyp.0000000000000067 

536. Wright JM, Musini VM, Gill R. First-line drugs for hypertension. Cochrane Database Syst Rev 2018;4:CD001841. https://doi.org/10.1002/14651858.CD001841.pub3 

537. Johnston GD. Dose-response relationships with antihypertensive drugs. Pharmacol Ther 1992;55:53–93. https://doi.org/10.1016/0163-7258(92)90029-y 

538. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 2009;338:b1665. https://doi.org/10.1136/bmj.b1665 

539. Messerli FH, Bangalore S, Schmieder RE. Wilder’s principle: pre-treatment value determines post-treatment response. Eur Heart J 2015;36:576–9. https://doi.org/10.1093/ eurheartj/ehu467 

540. Lasserson DS, Buclin T, Glasziou P. How quickly should we titrate antihypertensive medication? Systematic review modelling blood pressure response from trial data. Heart 2011;97:1771–5. https://doi.org/10.1136/hrt.2010.221473 

541. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on out-come incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J Hypertens 2014;32:2285–95. https://doi.org/10.1097/hjh.0000000000000378 

542. Verdecchia P, Staessen JA, Angeli F, de Simone G, Achilli A, Ganau A, et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet 2009;374:525–33. https://doi.org/10.1016/s0140-6736(09)61340-4 

543. Benavente OR, Coffey CS, Conwit R, Hart RG, McClure LA, Pearce LA, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet 2013;382:507–15. https://doi.org/10.1016/s0140-6736(13)60852-1 

544. Vaduganathan M, Claggett BL, Juraschek SP, Solomon SD. Assessment of long-term benefit of intensive blood pressure control on residual life span: secondary analysis of the Systolic Blood Pressure Intervention Trial (SPRINT). JAMA Cardiol 2020;5:576–81. https://doi.org/10.1001/jamacardio.2019.6192 

545. Lewis CE, Fine LJ, Beddhu S, Cheung AK, Cushman WC, Cutler JA, et al. Final report of a trial of intensive versus standard blood-pressure control. N Engl J Med 2021;384:1921–30. https://doi.org/10.1056/NEJMoa1901281 
546. Beddhu S, Chertow GM, Cheung AK, Cushman WC, Rahman M, Greene T, et al. Influence of baseline diastolic blood pressure on effects of intensive compared with standard blood pressure control. Circulation 2018;137:134–43. https://doi.org/10.1161/circulationaha.117.030848 
547. McEvoy JW, Daya N, Rahman F, Hoogeveen RC, Blumenthal RS, Shah AM, et al. Association of isolated diastolic hypertension as de ned by the 2017 ACC/AHA blood pressure guideline with incident cardiovascular outcomes. JAMA 2020;323:329–38. https://doi.org/10.1001/jama.2019.21402 
548. Jacobsen AP, Al Rifai M, Arps K, Whelton SP, Budoff MJ, Nasir K, et al. A cohort study and meta-analysis of isolated diastolic hypertension: searching for a threshold to guide treatment. Eur Heart J 2021;42:2119–29. https://doi.org/10.1093/eurheartj/ehab111 
549. McEvoy JW, Yang WY, Thijs L, Zhang Z-Y, Melga–rejo JD, Boggia J, et al. Isolated diastolic hypertension in the 
IDACO study: an age-stratified analysis using 24-hour ambulatory blood pressure measurements. Hypertension 2021;78:1222–31. https://doi.org/10.1161/hypertensionaha.121.17766 
550. Albasri A, Hattle M, Koshiaris C, Dunnigan A, Paxton B, Fox SE, et al. Association between antihypertensive treatment and adverse events: systematic review and meta-analysis. BMJ 2021;372:n189. https://doi.org/10.1136/bmj.n189 
551. Savoia C, Volpe M, Grassi G, Borghi C, Agabiti Rosei E, Touyz RM, et al. Personalized medicine — a modern approach for the diagnosis and management of hypertension. Clin Sci (Lond) 2017;131:2671–85. https://doi.org/10.1042/cs20160407 
552. Egan BM, Basile JN, Rehman SU, Davis PB, Grob CH 3rd, Riehle JF, et al. Plasma renin test-guided drug treatment algorithm for correcting patients with treated but uncontrolled hypertension: a randomized controlled trial. Am J Hypertens 2009;22:792–801. https://doi.org/10.1038/ajh.2009.63 
553. Huang KY, Tseng PT, Wu YC, Tu Y-K, Stubbs B, Su K-P, et al. Do beta-adrenergic blocking agents increase asthma exacerbation? A network meta-analysis of randomized controlled trials. Sci Rep 2021;11:452. https://doi.org/10.1038/s41598-020-79837-3 
554. Bennett M, Chang CL, Tatley M, Savage R, Hancox RJ. The safety of cardioselective β1-blockers in asthma: literature review and search of global pharmacovigilance safety reports. ERJ Open Res 2021;7:00801-2020. https://doi.org/10.1183/23120541.00801-2020 
555. Assimes TL, Elstein E, Langleben A, Suissa S. Long-term use of antihypertensive drugs and risk of cancer. Pharmacoepidemiol Drug Saf 2008;17:1039–49. https://doi.org/10.1002/pds.1656 
556. Zhang Y, Song M, Chan AT, Meyerhardt JA, Willett WC, Giovannucci EL. Long-term use of antihypertensive medications, hypertension and colorectal cancer risk and mortality: a prospective cohort study. Br J Cancer 2022;127:1974–82. https://doi.org/10.1038/s41416-022-01975-4 
557. Grossman E, Messerli FH. Long-term safety of antihypertensive therapy. Prog Cardiovasc Dis 2006;49:16–25. https://doi.org/10.1016/j.pcad.2006.06.002 
558. Parati G, Stergiou GS, Dolan E, Bilo G. Blood pressure variability: clinical relevance and application. J Clin Hypertens (Greenwich) 2018;20:1133–7. https://doi.org/10.1111/jch.13304 
559. Schutte AE, Kollias A, Stergiou GS. Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol 2022;19:643–54. https://doi.org/10.1038/s41569-022-00690-0 
560. Lauder L, Azizi M, Kirtane AJ, Böhm M, Mahfoud F. Device-based therapies for arterial hypertension. Nat Rev Cardiol 2020;17:614–28. https://doi.org/10.1038/s41569-020-0364-1 
561. Mahfoud F, Schlaich MP, Lobo MD. Device therapy of hypertension. Circ Res 2021;128:1080–99. https://doi.org/10.1161/circresaha.121.318091 
562. DiBona GF. Sympathetic nervous system and hypertension. Hypertension 2013;61:556–60. https://doi.org/10.1161/hypertensionaha.111.00633 
563. DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol 2010;298:R245–253. https://doi.org/10.1152/ajpregu.00647.2009 
564. Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet 2020;395:1444–51. https://doi.org/10.1016/s0140-6736(20)30554-7 
565. Weber MA, Kirtane AJ, Weir MR, Radhakrishnan J, Das T, Berk M, et al. The REDUCE HTN: REINFORCE: randomized, sham-controlled trial of bipolar radiofrequency renal denervation for the treatment of hypertension. JACC Cardiovasc Interv 2020;13:461–70. https://doi.org/10.1016/j.jcin.2019.10.061 
566. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 2018;391:2346–55. https://doi.org/10.1016/s0140-6736(18) 30951-6 
567. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 2018;391:2335–45. https://doi.org/10.1016/s0140-6736(18)31082-1 
568. Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet 2021;397: 2476–86. https://doi.org/10.1016/s0140-6736(21)00788-1 

569. Mahfoud F, Böhm M, Schmieder R, Narkiewicz K, Ewen S, Ruilope L, et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the global SYMPLICITY registry. Eur Heart J 2019;40:3474–82. https://doi.org/10.1093/eurheartj/ehz118 

570. Bhatt DL, Vaduganathan M, Kandzari DE, Leon MB, Rocha-Singh K, Townsend RR, et al. Long-term outcomes after catheter-based renal artery denervation for resistant hypertension: final follow-up of the randomised SYMPLICITY HTN-3 trial. Lancet 2022;400:1405–16. https://doi.org/10.1016/s0140-6736(22)01787-1 

571. Mahfoud F, Kandzari DE, Kario K, Townsend RR, Weber MA, Schmieder RE, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet 2022;399:1401–10. https://doi.org/10.1016/s0140-6736(22)00455-x 

572. Rader F, Kirtane AJ, Wang Y, Daemen J, Lurz P, Sayer J, et al. Durability of blood pressure reduction after ultrasound renal denervation: three-year follow-up of the treatment arm of the randomised RADIANCE-HTN SOLO trial. EuroIntervention 2022;18:e677–85. https://doi.org/10.4244/eij-d-22-00305 

573. Al Ghorani H, Kulenthiran S, Recktenwald MJM, Lau-der L, Kunz M, Götzinger F, et al. 10-year outcomes of catheter-based renal denervation in patients with resistant hypertension. J Am Coll Cardiol 2023;81:517–9. https://doi.org/10.1016/j.jacc.2022.11.038 

574. Stone P, Campbell J, Thompson S, Walker J. A prospective, randomized study comparing ultrasound versus uoroscopic guided femoral arterial access in noncardiac vascular patients. J Vasc Surg 2020;72:259–67. https://doi.org/10.1016/j.jvs.2019.09.051 

575. Jolly SS, Yusuf S, Cairns J, Niemelä K, Xavier D, Widimsky P, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 2011;377:1409–20. https://doi.org/10.1016/s0140-6736(11)60404-2 

576. Townsend RR, Walton A, Hettrick DA, Hickey GL, Weil J, Sharp ASP, et al. Review and meta-analysis of renal artery damage following percutaneous renal denervation with radiofrequency renal artery ablation. EuroIntervention 2020;16:89–96. https://doi.org/ 10.4244/eij-d-19-00902 

577. Sanders MF, Reitsma JB, Morpey M, Gremmels H, Bots ML, Pisano A, et al. Renal safety of catheter-based renal denervation: systematic review and meta-analysis. Nephrol Dial Transplant 2017;32:1440–7. https://doi.org/10.1093/ndt/gfx088 

578. Ahmad Y, Francis DP, Bhatt DL, Howard JP. Renal denervation for hypertension: a systematic review and meta-analysis of randomized, blinded, placebo-controlled trials. JACC Cardiovasc Interv 2021;14:2614–24. https://doi.org/10.1016/j.jcin.2021.09.020 

579. Chowdhury EK, Reid CM, Zomer E, Kelly DJ, Liew D. Cost-effectiveness of renal denervation therapy for treatment-resistant hypertension: a best case scenario. Am J Hypertens 2018;31:1156–63. https://doi.org/10.1093/ajh/hpy108 

580. Sharp ASP, Cao KN, Esler MD, Kandzari DE, Lobo MD, Schmieder RE, et al. Cost-effectiveness of catheter-based radiofrequency renal denervation for the treatment of uncontrolled hypertension: an analysis for the UK based on recent clinical evidence. Eur Heart J Qual Care Clin Outcomes 2024:qcae001. https://doi.org/10.1093/ ehjqcco/qcae001 

581. Fengler K, Reimann P, Rommel KP, Kresoja K-P, Blazek S, Unterhuber M, et al. Comparison of long-term outcomes for responders versus non-responders following renal denervation in resistant hypertension. J Am Heart Assoc 2021;10:e022429. https://doi.org/10.1161/jaha.121.022429 

582. Mahfoud F, Mancia G, Schmieder RE, Ruilope L, Narkiewicz K, Schlaich M, et al. Cardiovascular risk reduction after renal denervation according to time in therapeutic systolic blood pressure range. J Am Coll Cardiol 2022;80:1871–80. https://doi.org/10.1016/j.jacc.2022.08.802 

583. Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, et al. ESC guidelines for the management of acute coronary syndromes. Eur Heart J 2023;44:3720–826. https://doi.org/10.1093/eurheartj/ehad191 

584. Singh RR, Denton KM. Renal denervation. Hypertension 2018;72:528–36. https://doi.org/10.1161/hypertensionaha.118.10265 

585. Barbato E, Azizi M, Schmieder RE, Lauder L, Böhm M, Brouwers S, et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2023;44:1313–30. https://doi.org/10.1093/eurheartj/ehad054 

586. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014;370:1393–401. https://doi.org/10.1056/NEJMoa1402670 

587. Desch S, Okon T, Heinemann D, Kulle K, Röhnert K, Sonnabend M, et al. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension 2015;65:1202–8. https://doi.org/10.1161/hypertensionaha.115.05283 

588. Mathiassen ON, Vase H, Bech JN, Christensen KL, Buus NH, Schroeder AP, et al. Renal denervation in treatment-resistant essential hypertension. A randomized, SHAM-controlled, double-blinded 24–h blood pressure-based trial. J Hypertens 2016;34:1639–47. https://doi.org/10.1097/hjh.0000000000000977 

589. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 2017;390:2160–70. https://doi.org/10.1016/s0140-6736(17)32281-x 
590. Kario K, Yokoi Y, Okamura K, Fujihara M, Ogoyama Y, Yamamoto E, et al. Catheter-based ultrasound renal denervation in patients with resistant hypertension: the randomized, controlled REQUIRE trial. Hypertens Res 2022;45:221–31. https://doi.org/10.1038/s41440-021-00754-7 
591. Neuzil P, Merkely B, Erglis A, Marinskis G, de Groot JR, Schmidinger H, et al. Pacemaker-mediated programmable hypertension control therapy. J Am Heart Assoc 2017;6:e006974. https://doi.org/10.1161/jaha.117.006974 
592. Kalarus Z, Merkely B, Neužil P, Grabowski M, Mitkowski P, Marinskis G, et al. Pacemaker-based cardiac neuromodulation therapy in patients with hypertension: a pilot study. J Am Heart Assoc 2021;10:e020492. https://doi.org/10.1161/jaha.120.020492 
593. Musini VM, Tejani AM, Bassett K, Puil L, Wright JM. Pharmacotherapy for hypertension in adults 60 years or older. Cochrane Database Syst Rev 2019;6:CD000028. https://doi.org/10.1002/14651858.CD000028.pub3 
594. Musini VM, Gueyffier F, Puil L, Salzwedel DM, Wright JM. Pharmacotherapy for hypertension in adults aged 18 to 59 years. Cochrane Database Syst Rev 2017;8:CD008276. https://doi.org/10.1002/14651858.CD008276.pub2 
595. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment in hypertension: 9. Discontinuations for adverse events attributed to different classes of antihypertensive drugs: meta-analyses of randomized trials. J Hypertens 2016;34:1921–32. https://doi.org/10.1097/hjh.0000000000001052 
596. Benetos A, Petrovic M, Strandberg T. Hypertension management in older and frail older patients. Circ Res 2019;124:1045–60. https://doi.org/10.1161/circresaha.118.313236 
597. Frey L, Gravestock I, Pichierri G, Steurer J, Burgstaller JM. Serious adverse events in patients with target-oriented blood pressure management: a systematic review. J Hypertens 2019;37:2135–44. https://doi.org/10.1097/hjh.0000000000002176 
598. Palmer SC, Sciancalepore M, Strippoli GF. Trial quality in nephrology: how are we measuring up? Am J Kidney Dis 2011;58:335–7. https://doi.org/10.1053/j.ajkd.2011.06.006 
599. Carriazo S, Sarafidis P, Ferro CJ, Ortiz A. Blood pressure targets in CKD 2021: the never-ending guidelines debacle. Clin Kidney J 2022;15:845–51. https://doi.org/10.1093/ckj/sfac014 
600. Kessler A, Sollie S, Challacombe B, Briggs K, Van Hemelrijck M. The global prevalence of erectile dysfunction: a review. BJU Int 2019;124:587–99. https://doi.org/10.1111/bju.14813 
601. Doumas M, Douma S. The effect of antihypertensive drugs on erectile function: a proposed management algorithm. J Clin Hypertens (Greenwich) 2006;8:359–64. https://doi.org/10.1111/j.1524-6175.2005.05285.x 
602. Ismail SB, Noor NM, Hussain NHN, Sulaiman Z, Shamsudin MA, Irfan M. Angiotensin receptor blockers for erectile dysfunction in hypertensive men: a brief meta-analysis of randomized control trials. Am J Mens Health 2019;13:1557988319892735. https://doi.org/10.1177/1557988319892735 
603. Lawson AJ, Hameed MA, Brown R, Cappuccio FP, George S, Hinton T, et al. Nonadherence to antihypertensive medications is related to pill burden in apparent treatment-resistant hypertensive individuals. J Hypertens 2020;38:1165–73. https://doi.org/10.1097/hjh.0000000000002398 
604. Choudhry NK, Kronish IM, Vongpatanasin W, Ferdinand KC, Pavlik VN, Egan BM, et al. Medication adherence and blood pressure control: a scientific statement from the American heart association. Hypertension 2022;79:e1–14. https://doi.org/10.1161/hyp.0000000000000203 
605. Liao CT, Toh HS, Sun L, Yang C-T, Hu A, Wei D, et al. Cost-effectiveness of intensive vs standard blood pressure control among older patients with hypertension. JAMA Netw Open 2023;6:e230708. https://doi.org/10.1001/jamanetworkopen.2023.0708 
606. O’Donoghue P, O’Halloran AM, Kenny RA, Romero-Ortuno R. Do the frail experience more adverse events from intensive blood pressure control? A 2-year prospective study in the Irish Longitudinal Study on Ageing (TILDA). EClinicalMedicine 2022;45:101304. https://doi.org/10.1016/j.eclinm.2022.101304 
607. Sexton DJ, Canney M, O’Connell MDL, Moore P, Little MA, O’Seaghdha CM, et al. Injurious falls and syncope in older community-dwelling adults meeting inclusion criteria for SPRINT. JAMA Intern Med 2017;177:1385–7. https://doi.org/10.1001/jamainternmed.2017.2924 
608. Masoli JAH, Sheppard JP, Rajkumar C. Hypertension management in older patients — are the guideline blood pressure targets appropriate? Age Ageing 2022;51:afab226. https://doi.org/10.1093/ageing/afab226 
609. Richter D, Guasti L, Walker D, Lambrinou E, Lionis C, Abreu A, et al. Frailty in cardiology: definition, assessment and clinical implications for general cardiology. A consensus document of the Council for Cardiology Practice (CCP), Association for Acute Cardio Vascular Care (ACVC), Association of Cardiovascular Nursing and Allied Professions (ACNAP), European Association of Preventive Cardiology (EAPC), European Heart Rhythm Association (EHRA), Council on Valvular Heart Diseases (VHD), Council on Hypertension (CHT), Council of Cardio-Oncology (CCO), Working Group (WG) Aorta and Peripheral Vascular Diseases, WG e-Cardiology, WG Thrombosis, of the European Society of Cardiology, European Primary Care Cardiology Society (EPCCS). Eur J Prev Cardiol 2022;29:216–27. https://doi.org/10.1093/eurjpc/zwaa167 
610. Hughes D, Judge C, Murphy R, Loughlin E, Costello M, Whiteley W, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis. JAMA 2020;323:1934–44. https://doi.org/10.1001/jama.2020.4249 

611. Peters R, Xu Y, Fitzgerald O, Aung HL, Beckett N, Bulpitt C, et al. Blood pressure lowering and prevention of dementia: an individual patient data meta-analysis. Eur Heart J 2022;43:4980–90. https://doi.org/10.1093/eurheartj/ehac584 

612. Pathak A, Poulter NR, Kavanagh M, Kreutz R, Burnier M. Improving the management of hypertension by tackling awareness, adherence, and clinical inertia: a symposium report. Am J Cardiovasc Drugs 2022;22:251–61. https://doi.org/10.1007/s40256-021-00505-6 

613. Sheppard JP, Lown M, Burt J, Temple E, Lowe R, Ashby H, et al. Generalizability of blood pressure lowering trials to older patients: cross-sectional analysis. J Am Geriatr Soc 2020;68:2508–15. https://doi.org/10.1111/jgs.16749 

614. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering treatment in hypertension: 8. Outcome reductions vs. discontinuations because of adverse drug events — meta-analyses of randomized trials. J Hypertens 2016;34:1451–63. https://doi.org/10.1097/hjh.0000000000000972 

615. Jordan J, Tank J, Reuter H. Risk-benefit assessment of intense blood pressure lowering. Hypertension 2019;74:1302–4. https://doi.org/10.1161/hypertensionaha.119.13835 

616. Rietz H, Pennlert J, Nordström P, Brunström M. Prevalence, time-trends and clinical characteristics of hypertension in young adults: nationwide cross-sectional study of 1.7 million Swedish 18-year-olds, 1969–2010. J Hypertens 2022;40:1231–8. https://doi.org/10.1097/hjh.0000000000003141 

617. Ostchega Y, Fryar CD, Nwankwo T, Nguyen DT. Hypertension prevalence among adults aged 18 and over: United States, 2017–2018. NCHS Data Brief 2020;364:1–8. 

618. O’Neil A, Scovelle AJ, Milner AJ, Kavanagh A. Gender/sex as a social determinant of cardiovascular risk. Circulation 2018;137:854–64. https://doi.org/10.1161/circulationaha.117.028595 

619. Bruno RM, Pucci G, Rosticci M, Guarino L, Guglielmo C, Agabiti Rosei C, et al. 
Association between lifestyle and systemic arterial hypertension in young adults: a national, survey-based, cross-sectional study. High Blood Press Cardiovasc Prev 2016;23:31–40. https://doi.org/10.1007/s40292-016-0135-6 

620. Suzuki Y, Kaneko H, Yano Y, Okada A, Itoh H, Matsuoka S, et al. Association of cardiovascular health metrics with risk of transition to hypertension in non-hypertensive young adults. Am J Hypertens 2022;35:858–66. https://doi.org/10.1093/ajh/hpac057 

621. Haggart RC, Bartels CM, Smith MA, Johnson HM. Sociodemographics and hypertension control among young adults with incident hypertension: a multidisciplinary group practice observational study. J Hypertens 2018;36:2425–33. https://doi.org/10.1097/hjh.0000000000001872 

622. Liu J, Bu X, Wei L, Wang X, Lai L, Dong C, et al. Global burden of cardiovascular diseases attributable to hypertension in young adults from 1990 to 2019. J Hypertens 2021;39:2488–96. https://doi.org/10.1097/hjh.0000000000002958 

623. Zhang Y, Moran AE. Trends in the prevalence, awareness, treatment, and control of hypertension among young adults in the United States, 1999 to 2014. Hypertension 2017;70:736–42. https://doi.org/10.1161/hypertensionaha.117.09801 

624. Yano Y, Stamler J, Garside DB, Daviglus ML, Franklin SS, Carnethon MR, et al. Isolated systolic hypertension in young and middle-aged adults and 31-year risk for cardiovascular mortality: the Chicago Heart Association Detection Project in Industry study. J Am Coll Cardiol 2015;65:327–35. https://doi.org/10.1016/j.jacc.2014.10.060 

625. Noilhan C, Barigou M, Bieler L, Amar J, Chamontin B, Bouhanick B, et al. Causes of secondary hypertension in the young population: a monocentric study. Ann Cardiol Angeiol (Paris) 2016;65:159–64. https://doi.org/10.1016/j.ancard.2016.04.016 

626. Jones ESW, Esack I, Mangena P, Rayner BL. Hypertension in adolescents and young adults referred to a tertiary hypertension clinic in Cape Town, South Africa. Medicine (Baltimore) 2020;99:e23137. https://doi.org/10.1097/md.0000000000023137 

627. Chasan-Taber L, Willett WC, Manson JE, Spiegelman D, Hunter DJ, Curhan G, et al. Prospective study of oral contraceptives and hypertension among women in the United States. Circulation 1996;94:483–9. https://doi.org/10.1161/01.cir.94.3.483 

628. Lubianca JN, Faccin CS, Fuchs FD. Oral contraceptives: a risk factor for uncontrolled blood pressure among hypertensive women. Contraception 2003;67:19–24. https://doi.org/10.1016/s0010-7824(02)00429-8 

629. The American College of Obstetricians and Gynecologists. ACOG practice bulletin No. 206: use of hormonal contraception in women with coexisting medical conditions. Obstet Gynecol 2019;133:e128–50. https://doi.org/10.1097/aog.0000000000003072 

630. Glisic M, Shahzad S, Tsoli S, Chadni M, Asllanaj E, Rojas LZ, et al. Association between progestin-only contraceptive use and cardiometabolic outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol 2018;25:1042–52. https://doi.org/10.1177/2047487318774847 

631. Archer DF, Ahrendt HJ, Drouin D. Drospirenone-only oral contraceptive: results from a multicenter noncomparative trial of efficacy, safety and tolerability. Contraception 2015;92:439–44. https://doi.org/10.1016/j.contraception.2015.07.014 

632. Pappaccogli M, Di Monaco S, Warchoł-Celińska E, Lorthioir A, Amar L, Aparicio LS, et al. The European/International Fibromuscular Dysplasia Registry and Initiative (FEIRI) — clinical phenotypes and their predictors based on a cohort of 1000 patients. Cardiovasc Res 2021;117:950–9. https://doi.org/10.1093/cvr/cvaa102 
633. Thompson P, Logan I, Tomson C, Sheerin N, Ellam T. Obesity, sex, race, and early onset hypertension: implications for a refined investigation strategy. Hypertension 2020;76:859–65. https://doi.org/10.1161/hypertensionaha.120.15557 
634. Saladini F, Fania C, Mos L, Mazzer A, Casiglia E, Palatini P. Office pulse pressure is a predictor of favorable outcome in young- to middle-aged subjects with stage 1 hypertension. Hypertension 2017;70:537–42. https://doi.org/10.1161/hypertensionaha.117. 09516 
635. Hoeltzenbein M, Tissen-Diabaté T, Fietz AK, Zinke S, Kayser A, Meister R, et al. Increased rate of birth defects after first trimester use of angiotensin converting enzyme inhibitors — treatment or hypertension related? An observational cohort study. Pregnancy Hypertens 2018;13:65–71. https://doi.org/10.1016/j.preghy.2018.04.022 
636. Ahmed B, Tran DT, Zoega H, Kennedy SE, Jorm LR, Havard A. Maternal and perinatal outcomes associated with the use of renin-angiotensin system (RAS) blockers for chronic hypertension in early pregnancy. Pregnancy Hypertens 2018;14:156–61. https://doi.org/10.1016/j.preghy.2018.09.010 
637. Cífková R, Johnson MR, Kahan T, Brguljan J, Williams B, Coca A, et al. Peripartum management of hypertension: a position paper of the ESC Council on Hypertension and the European Society of Hypertension. Eur Heart J Cardiovasc Pharmacother 2020;6:384–93. https://doi.org/10.1093/ehjcvp/pvz082 
638. Magee LA, Brown MA, Hall DR, Gupte S, Hennessy A, Karumanchi SA, et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens 2022;27:148–69. https://doi.org/10.1016/j.preghy.2021.09.008 
639. Kassebaum NJ, Barber RM, Bhutta ZA, Dandona L, Gething PW, Hay SI, et al. Global, regional, and national levels of maternal mortality, 1990–2015: a systematic analysis for the Glo-bal Burden of Disease Study 2015. The Lancet 2016;388:1775–812. https://doi.org/10.1016/S0140-6736(16)31470-2 
640. Garovic VD, White WM, Vaughan L, Saiki M, Parashuram S, Garcia-Valencia O, et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J Am Coll Cardiol 2020;75:2323–34. https://doi.org/10.1016/j.jacc.2020.03.028 
641. Heida KY, Franx A, van Rijn BB, Eijkemans MJC, Boer JMA, Verschuren MWM, et al. Earlier age of onset of chro-nic hypertension and type 2 diabetes mellitus after a hypertensive disorder of pregnancy or gestational diabetes mellitus. Hypertension 2015;66:1116–22. https://doi.org/10.1161/hypertensionaha.115.06005 
642. Garovic VD, Bailey KR, Boerwinkle E, Hunt SC, We-der AB, Curb D, et al. Hypertension in pregnancy as a risk factor for cardiovascular disease later in life. J Hypertens 2010;28:826–33. https://doi.org/10.1097/HJH.0b013e328335c29a 
643. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 2018;72:24–43. https://doi.org/10.1161/hypertensionaha.117.10803 
644. Homer CS, Brown MA, Mangos G, Davis GK. Non-proteinuric pre-eclampsia: a novel risk indicator in women with gestational hypertension. J Hypertens 2008;26:295–302. https://doi.org/10.1097/HJH.0b013e3282f1a953 
645. Davis GK, Roberts LM, Mangos GJ, Brown MA. Comparisons of auscultatory hybrid and automated sphygmomanometers with mercury sphygmomanometry in hypertensive and normotensive pregnant women: parallel validation studies. J Hypertens 2015;33:499–505; discussion 505–496. https://doi.org/10.1097/hjh.0000000000000420 
646. Schmella MJ, Clifton RG, Althouse AD, Roberts JM. Uric acid determination in gestational hypertension: is it as effective a delineator of risk as proteinuria in high-risk women? Reprod Sci 2015;22:1212–9. https://doi.org/10.1177/1933719115572477 
647. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med 2017;377:613–22. https://doi.org/10.1056/NEJMoa1704559 
648. Chappell LC, Shennan AH. Assessment of proteinuria in pregnancy. BMJ 2008;336:968–9. https://doi.org/10.1136/bmj.39540.657928.BE 
649. Jeon HR, Jeong DH, Lee JY, Woo EY, Shin GT, Kim S-Y. sFlt-1/PlGF ratio as a predictive and prognostic marker for preeclampsia. J Obstet Gynaecol Res 2021;47:2318–23. https://doi.org/10.1111/jog.14815 
650. Bateman BT, Bansil P, Hernandez-Diaz S, Mhyre JM, Callaghan WM, Kuklina EV. Prevalence, trends, and outcomes of chronic hypertension: a nationwide sample of delivery admissions. Am J Obstet Gynecol 2012;206:134.e1–8. https://doi.org/10.1016/j.ajog.2011.10.878 
651. Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat Genet 2021;53:1360–72. https://doi.org/10.1038/s41588-021-00906-y 
652. Lenders JWM, Langton K, Langenhuijsen JF, Eisenhofer G. Pheochromocytoma and pregnancy. Endocrinol Metab Clin North Am 2019;48:605–17. https://doi.org/10.1016/ j.ecl.2019.05.006 
653. Bancos I, Atkinson E, Eng C, Young WF Jr, Neumann HPH, Yukina M, et al. Maternal and fetal outcomes in phaeochromocytoma and pregnancy: a multicentre retrospective cohort study and systematic review of literature. Lancet Diabetes Endocrinol 2021;9:13–21. https://doi.org/10.1016/s2213-8587(20)30363-6 
654. Martínez-Vizcaíno V, Sanabria-Martínez G, Fernández-Rodríguez R, Cavero-Redondo I, Pascual-Morena C, Álvarez-Bueno C, et al. Exercise during pregnancy for preventing gestational diabetes mellitus and hypertensive disorders: an umbrella review of randomised controlled trials and an updated meta-analysis. Bjog 2023;130:264–75. https://doi.org/10.1111/1471-0528.17304 

655. Mottola MF, Davenport MH, Ruchat SM, Davies GA, Poitras VJ, Gray CE, et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br J Sports Med 2018;52:1339–46. https://doi.org/10.1136/bjsports-2018-100056 

656. Askie LM, Duley L, Henderson-Smart DJ, Stewart LA. Antiplatelet agents for prevention of pre-eclampsia: a meta-ana-lysis of individual patient data. Lancet 2007;369:1791–8. https://doi.org/10.1016/s0140-6736(07)60712-0 

657. Duley L, Meher S, Hunter KE, Seidler AL, Askie LM. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev 2019;2019:CD004659. https://doi.org/10.1002/14651858.CD004659.pub3 

658. Hofmeyr GJ, Lawrie TA, Atallah ÁN, Torloni MR. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev 2018;10:CD001059. https://doi.org/10.1002/14651858.CD001059.pub5 

659. Dwarkanath P, Muhihi A, Sudfeld CR, Wylie BJ, Wang M, Perumal N, et al. Two randomized trials of low-dose calcium supplementation in pregnancy. N Engl J Med 2024;390:143–53. https://doi.org/10.1056/NEJMoa2307212 

660. Abalos E, Duley L, Steyn DW, Gialdini C. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev 2018;10:CD002252. https://doi.org/10.1002/14651858.CD002252.pub4 

661. Magee LA, von Dadelszen P, Rey E, Ross S, Asztalos E, Murphy KE, et al. Less-tight versus tight control of hypertension in pregnancy. N Engl J Med 2015;372:407–17. https://doi.org/10.1056/NEJMoa1404595 

662. Redman CW. Fetal outcome in trial of antihypertensive treatment in pregnancy. Lancet 1976;2:753–6. https://doi.org/10.1016/s0140-6736(76)90597-3 

663. Cockburn J, Moar VA, Ounsted M, Redman CW. Final report of study on hypertension during pregnancy: the effects of specific treatment on the growth and development of the children. Lancet 1982;1:647–9. https://doi.org/10.1016/s0140-6736(82)92202-4 

664. Bellos I, Pergialiotis V, Papapanagiotou A, Loutradis D, Daskalakis G. Comparative efficacy and safety of oral antihypertensive agents in pregnant women with chronic hypertension: a network metaanalysis. Am J Obstet Gynecol 2020;223:525–37. https://doi.org/10.1016/j.ajog.2020.03.016 

665. Lydakis C, Lip GY, Beevers M, Beevers DG. Atenolol and fetal growth in pregnancies complicated by hypertension. Am J Hypertens 1999;12:541–7. https://doi.org/10.1016/s0895-7061(99)00031-x 

666. Sridharan K, Sequeira RP. Drugs for treating severe hypertension in pregnancy: a network meta-analysis and trial sequential analysis of randomized clinical trials. Br J Clin Pharmacol 2018;84:1906–16. https://doi.org/10.1111/bcp.13649 

667. Bhat AD, Keasler PM, Kolluru L, Dombrowski MM, Palanisamy A, Singh PM, et al. Treatment of acute-onset hypertension in pregnancy: a network meta-analysis of randomized controlled trials comparing anti-hypertensives and route of administration. Pregnancy Hypertens 2023;34:74–82. https://doi.org/10.1016/j.preghy.2023.10.005 

668. Ehikioya E, Okobi OE, Beeko MAE, Abanga R, Abah NNI, Briggs L, et al. Comparing intravenous labetalol and intravenous hydralazine for managing severe gestational hypertension. Cureus 2023;15:e42332. https://doi.org/10.7759/cureus.42332 

669. Halpern DG, Weinberg CR, Pinnelas R, Mehta-Lee S, Economy KE, Valente AM, et al. Use of medication for cardiovascular disease during pregnancy: JACC state-of-the-art review. J Am Coll Cardiol 2019;73:457–76. https://doi.org/10.1016/j.jacc.2018.10.075 

670. Goel A, Maski MR, Bajracharya S, Wenger JB, Zhang D, Salahuddin S, et al. Epidemiology and mechanisms of de novo and persistent hypertension in the postpartum period. Circulation 2015;132:1726–33. https://doi.org/10.1161/circulationaha.115.015721 

671. Behrens I, Basit S, Melbye M, Lykke JA, Wohlfahrt J, Bundgaard H, et al. Risk of postpregnancy hypertension in women with a history of hypertensive disorders of pregnancy: nationwide cohort study. BMJ 2017;358:j3078. https://doi.org/10.1136/bmj.j3078 

672. Barrett PM, McCarthy FP, Evans M, Kublickas M, Perry IJ, Stenvinkel P, et al. Hypertensive disorders of pregnancy and the risk of chronic kidney disease: a Swedish registry-based cohort study. PLoS Med 2020;17:e1003255. https://doi.org/10.1371/journal.pmed.1003255 

673. Giorgione V, Ridder A, Kalafat E, Khalil A, Thilaganathan B. Incidence of postpartum hypertension within 2 years of a pregnancy complicated by pre-eclampsia: a systematic review and meta-analysis. BJOG 2021;128:495–503. https://doi.org/10.1111/1471-0528.16545 

674. Benschop L, Duvekot JJ, Versmissen J, van Broekhoven V, Steegers EAP, Roeters van Lennep JE, et al. Blood pressure profile 1 year after severe preeclampsia. Hypertension 2018;71:491–8. https://doi.org/10.1161/hypertensionaha.117.10338 

675. Kitt J, Fox R, Frost A, Shanyinde M, Tucker K, Bateman PA, et al. Long-term blood pressure control after hypertensive pregnancy following physician-optimized self-management: the POP-HT randomized clinical trial. JAMA 2023;330:1991–9. https://doi.org/10.1001/jama.2023.21523 

676. van Oostwaard MF, Langenveld J, Schuit E, Papatsonis DNM, Brown MA, Byaruhanga RN, et al. Recurrence of hypertensive disorders of pregnancy: an individual patient data metaanalysis. Am J Obstet Gynecol 2015;212:624.e1–17. https://doi.org/10.1016/j.ajog.2015.01.009 
677. Brown MA, Mackenzie C, Dunsmuir W, Roberts L, Ikin K, Matthews J, et al. Can we predict recurrence of pre-eclampsia or gestational hypertension? BJOG 2007;114:984–93. https://doi.org/10.1111/j.1471-0528.2007.01376.x 
678. Heimberger S, Perdigao JL, Mueller A, Shahul S, Na-seem H, Minhas R, et al. Effect of blood pressure control in early pregnancy and clinical outcomes in African American women with chronic hypertension. Pregnancy Hypertens 2020;20:102–7. https://doi.org/10.1016/j.preghy.2020.03.008 
679. Salazar MR, Espeche WG, Balbín E, Leiva Sisnie-guez CE, Leiva Sisnieguez BC, Stavile RN, et al. Office blood pressure values and the necessity of out-of-office measurements in high-risk pregnancies. J Hypertens 2019;37:1838–44. https://doi.org/10.1097/hjh.0000000000002140 
680. Buawangpong N, Teekachunhatean S, Koonrungsesomboon N. Adverse pregnancy outcomes associated with first-trimester exposure to angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers: a systematic review and meta-analysis. Pharmacol Res Perspect 2020;8:e00644. https://doi.org/10.1002/prp2.644 
681. Weber-Schoendorfer C, Kayser A, Tissen-Diabaté T, Winterfeld U, Eleftheriou G, Te Winkel B, et al. Fetotoxic risk of AT1 blockers exceeds that of angiotensin-converting enzyme inhibitors: an observational study. J Hypertens 2020;38:133–41. https://doi.org/10.1097/hjh.0000000000002233 
682. Chen X, Mao G, Leng SX. Frailty syndrome: an overview. Clin Interv Aging 2014;9:433–41. https://doi.org/10.2147/cia.S45300 
683. Rodriguez-Mañas L, Fried LP. Frailty in the clinical scenario. Lancet 2015;385:e7–9. https://doi.org/10.1016/s0140-6736(14)61595-6 
684. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001;56:M146–156. https://doi.org/10.1093/gerona/56.3.m146 
685. Fried LP, Kronmal RA, Newman AB, Bild DE, Mittelmark MB, Polak JF, et al. Risk factors for 5-year mortality in older adults: the cardiovascular health study. JAMA 1998;279:585–92. https://doi.org/10.1001/jama.279.8.585 
686. Martens DS, Thijs L, Latosinska A, Trenson S, Siwy J, Zhang Z-Y, et al. Urinary peptidomic profiles to address age-related disabilities: a prospective population study. Lancet Healthy Longev 2021;2:e690–703. https://doi.org/10.1016/s2666-7568(21) 00226-9 
687. Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol 2007;293:R3–r12. https://doi.org/10.1152/ajpregu.00031.2007 
688. Paleczny B, Niewiński P, Rydlewska A, Piepoli MF, Borodulin-Nadzieja L, Jankowska EA, et al. Age-related reflex responses from peripheral and central chemoreceptors in healthy men. Clin Auton Res 2014;24:285–96. https://doi.org/10.1007/s10286- 014-0263-9 
689. Anker D, Santos-Eggimann B, Zwahlen M, Santschi V, Rodondi N, Wolfson C, et al. Blood pressure in relation to frailty in older adults: a population-based study. J Clin Hypertens (Greenwich) 2019;21:1895–904. https://doi.org/10.1111/jch.13722 
690. Ravindrarajah R, Hazra NC, Hamada S, Charlton J, Jackson SHD, Dregan A, et al. Systolic blood pressure trajectory, frailty, and all-cause mortality >80 years of age: cohort study using electronic health records. Circulation 2017;135:2357–68. https://doi.org/10.1161/circulationaha.116.026687 
691. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr 2008;8:24. https://doi.org/10.1186/1471-2318-8-24 
692. Clegg A, Bates C, Young J, Ryan R, Nichols L, Ann Teale E, et al. Development and validation of an electronic frailty index using routine primary care electronic health record data. Age Ageing 2016;45:353–60. https://doi.org/10.1093/ageing/afw039 
693. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005;173:489–95. https://doi.org/10.1503/cmaj.050051 
694. Nguyen TN, Harris K, Woodward M, Chalmers J, Cooper M, Hamet P, et al. The impact of frailty on the effectiveness and safety of intensive glucose control and blood pressure-lowering therapy for people with type 2 diabetes: results from the ADVANCE trial. Diabetes Care 2021;44:1622–9. https://doi.org/10.2337/dc20-2664 
695. Masoli JAH, Delgado J, Pilling L, Strain D, Melzer D. Blood pressure in frail older adults: associations with cardiovascular outcomes and all-cause mortality. Age Ageing 2020;49:807–13. https://doi.org/10.1093/ageing/afaa028 
696. Aparicio LS, Thijs L, Boggia J, Jacobs L, Barochiner J, Odili AN, et al. Defining thresholds for home blood pressure monitoring in octogenarians. Hypertension 2015;66:865–73. https://doi.org/10.1161/hypertensionaha.115.05800 
697. Gaffney B, Jacobsen AP, Pallippattu AW, Leahy N, McEvoy JW. The diastolic blood pressure J-curve in hypertension management: links and risk for cardiovascular disease. Integr Blood Press Control 2021;14:179–87. https://doi.org/10.2147/ibpc.S286957 
698. Warwick J, Falaschetti E, Rockwood K, Mitnitski A, Thijs L, Beckett N, et al. No evidence that frailty modifies the positive impact of antihypertensive treatment in very elderly people: an investigation of the impact of frailty upon treatment effect in the HYpertension in the Very Elderly Trial (HYVET) study, a double-blind, placebo-controlled study of antihypertensives in people with hypertension aged 80 and over. BMC Med 2015;13:78. https://doi.org/10.1186/s12916-015-0328-1 
699. Todd OM, Wilkinson C, Hale M, Wong NL, Hall M, Sheppard JP, et al. Is the association between blood pressure and mortality in older adults different with frailty? A systematic review and meta-analysis. Age Ageing 2019;48:627–35. https://doi.org/10.1093/ageing/afz072 

700. Li Y, Thijs L, Zhang ZY, Asayama K, Hansen TW, Boggia J, et al. Opposing age-related trends in absolute and relative risk of adverse health outcomes associated with out-of-office blood pressure. Hypertension 2019;74:1333–42. https://doi.org/10.1161/hypertensionaha.119.12958 

701. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med 2008;358:1887–98. https://doi.org/10.1056/NEJMoa0801369 

702. Peters R, Beckett N, McCormack T, Fagard R, Flet-cher A, Bulpitt C. Treating hypertension in the very elderly-benefits, risks, and future directions, a focus on the hypertension in the very elderly trial. Eur Heart J 2014;35:1712–8. https://doi.org/10.1093/eurheartj/eht464 

703. Travers J, Romero-Ortuno R, Bailey J, Cooney MT. Delaying and reversing frailty: a systematic review of primary care interventions. Br J Gen Pract 2019;69:e61–9. https://doi.org/10.3399/bjgp18X700241 

704. Bogaerts JMK, von Ballmoos LM, Achterberg WP, Gussekloo J, Streit S, van der Ploeg MA, et al. Do we AGREE on the targets of antihypertensive drug treatment in older adults: a systematic review of guidelines on primary prevention of cardiovascular diseases. Age Ageing 2022;51:afab192. https://doi.org/10.1093/ageing/afab192 

705. Sheppard JP, Benetos A, McManus RJ. Antihypertensive deprescribing in older adults: a practical guide. Curr Hypertens Rep 2022;24:571–80. https://doi.org/10.1007/s11906-022-01215-3 

706. McDonnell CC, Rogers KC, Regen SM, Finks SW. The Fall Risk with Alpha blockers Given InitiaL dose or Elderly status (FRAGILE) study. Ann Pharmacother 2020;54:226–31. https://doi.org/10.1177/1060028019880305 

707. Hiremath S, Ruzicka M, Petrcich W, McCallum MK, Hundemer GL, Tanuseputro P, et al. Alpha-blocker use and the risk of hypotension and hypotension-related clinical events in women of advanced age. Hypertension 2019;74:645–51. https://doi.org/10.1161/hypertensionaha.119.13289 

708. Li H, Xu TY, Li Y, Chia Y-C, Buranakitjaroen P, Cheng H-M, et al. Role of α1-blockers in the current management of hypertension. J Clin Hypertens (Greenwich) 2022;24:1180–6. https://doi.org/10.1111/jch.14556 

709. Ravindrarajah R, Dregan A, Hazra NC, Hamada S, Jackson SHD, Gulliford MC, et al. Declining blood pressure and intensification of blood pressure management among people over 80 years: cohort study using electronic health records. J Hypertens 2017;35:1276–82. https://doi.org/10.1097/hjh.0000000000001291 

710. Chun S, Han K, Lee S, Cho M-H, Jeong S-M, Jung H-W, et al. Impact of frailty on the relationship between blood pressure and cardiovascular diseases and mortality in young-old adults. J Pers Med 2022;12:418.https://doi.org/10.3390/jpm12030418 

711. Khan N, McAlister FA. Re-examining the efficacy of beta-blockers for the treatment of hypertension: a meta-analysis. CMAJ 2006;174:1737–42. https://doi.org/10.1503/cmaj.060110 

712. Lavan AH, Gallagher P, Parsons C, O’Mahony D. STOPPFrail (Screening Tool of Older Persons Prescriptions in Frail adults with limited life expectancy): consensus validation. Age Ageing 2017;46:600–7. https://doi.org/10.1093/ageing/afx005 

713. Eeftinck Schattenkerk DW, van Gorp J, Vogt L, Peters RJ, van den Born BH. Isolated systolic hypertension of the young and its association with central blood pressure in a large multi-ethnic population. The HELIUS study. Eur J Prev Cardiol 2018;25:1351–9. https://doi.org/10.1177/2047487318777430 

714. Franklin SS, Jacobs MJ, Wong ND, L’Italien GJ, Lapuerta P. Predominance of isolated systolic hypertension among middle-aged and elderly US hypertensives: analysis based on National Health and Nutrition Examination Survey (NHANES) III. Hypertension 2001;37:869–74. https://doi.org/10.1161/01.hyp.37.3.869 

715. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012;30:445–8. https://doi.org/10.1097/HJH.0b013e32834fa8b0 

716. The Reference Values for Arterial Stiffness Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J 2010;31:2338–50. https://doi.org/10.1093/eurheartj/ehq165 

717. Li Y, Wei FF, Thijs L, Boggia J, Asayama K, Hansen TW, et al. Ambulatory hypertension subtypes and 24-hour systolic and diastolic blood pressure as distinct outcome predictors in 8341 untreated people recruited from 12 populations. Circulation 2014;130: 466–74. https://doi.org/10.1161/circulationaha.113.004876 

718. Staessen JA, Gasowski J, Wang JG, Thijs L, Hond ED, Boissel J-P, et al. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet 2000;355:865–72. https://doi.org/10.1016/s0140-6736(99)07330-4 

719. McEniery CM, Yasmin, Wallace S, Maki-Petaja K, McDonnell B, Sharman JE, et al. Increased stroke volume and aortic stiffness contribute to isolated systolic hypertension in young adults. Hypertension 2005;46:221–6. https://doi.org/10.1161/01.HYP.0000165310.84801.e0 

720. Palatini P, Rosei EA, Avolio A, Bilo G, Casiglia E, Ghiadoni L, et al. Isolated systolic hypertension in the young: a position paper endorsed by the European Society of Hypertension. J Hypertens 2018;36:1222–36. https://doi.org/10.1097/hjh.0000000000001726 
721. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension 2020;75:1334–57. https://doi.org/10.1161/hypertensionaha.120.15026 
722. Yano Y, Chang Kim H, Lee H, Azahar N, Ahmed S, Kitaoka K, et al. Response to isolated diastolic hypertension and risk of cardiovascular disease: controversies in hypertension — con side of the argument. Hypertension 2022;79:1579. https://doi.org/10.1161/hypertensionaha.122.19493 
723. Jacobsen AP, McKittrick M, Daya N, Al Rifai M, McEvoy JW. Isolated diastolic hypertension and risk of cardiovascular disease: controversies in hypertension — con side of the argument. Hypertension 2022;79:1571–8. https://doi.org/10.1161/hypertensionaha.122.18458 
724. Blank SG, Mann SJ, James GD, West JE, Pickering TG. Isolated elevation of diastolic blood pressure. Real or artifactual? Hypertension 1995;26:383–9. https://doi.org/10.1161/01.hyp.26.3.383 
725. Cho SMJ, Lee H, Koyama S, Zou RS, Schuermans A, Ganesh S, et al. Cumulative diastolic blood pressure burden in normal systolic blood pressure and cardiovascular disease. Hypertension 2024;81:273–81. https://doi.org/10.1161/hypertensionaha.123.22160 
726. Grobman B, Turkson-Ocran RN, Staessen JA, Yu Y-L, Lipsitz LA, Mukamal KJ, et al. Body position and orthostatic hypotension in hypertensive adults: results from the Syst-Eur trial. Hypertension 2023;80:820–7. https://doi.org/10.1161/hypertensionaha.122.20602 
727. Juraschek SP, Taylor AA, Wright JT Jr, Evans GW, Miller ER, Plante TB, et al. Orthostatic hypotension, cardiovascular outcomes, and adverse events: results from SPRINT. Hypertension 2020;75:660–7. https://doi.org/10.1161/hypertensionaha.119.14309 
728. Juraschek SP, Daya N, Appel LJ, Miller ER, McEvoy JW, Matsushita K, et al. Orthostatic hypotension and risk of clinical and subclinical cardiovascular disease in middle-aged adults. J Am Heart Assoc 2018;7:e008884. https://doi.org/10.1161/jaha.118.008884 
729. Fleg JL, Evans GW, Margolis KL, Barzilay J, Basile JN, Bigger JT, et al. Orthostatic hypotension in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) blood pressure trial: prevalence, incidence, and prognostic significance. Hypertension 2016;68:888–95. https://doi.org/10.1161/hypertensionaha.116.07474 
730. Juraschek SP, Hu JR, Cluett JL, Ishak A, Mita C, Lipsitz LA, et al. Effects of intensive blood pressure treatment on orthostatic hypotension: a systematic review and individual participant-based meta-analysis. Ann Intern Med 2021;174:58–68. https://doi.org/10.7326/m20-4298 
731. Ylitalo A, Airaksinen KE, Sellin L, Huikuri HV. Effects of combination antihypertensive therapy on baroreflex sensitivity and heart rate variability in systemic hypertension. Am J Cardiol 1999;83:885–9. https://doi.org/10.1016/s0002-9149(98)01067-4 
732. Ganjehei L, Massumi A, Razavi M, Wilson JM. Orthostatic hypotension as a manifestation of vitamin B12 de ciency. Tex Heart Inst J 2012;39:722–3. 
733. Shimbo D, Barrett Bowling C, Levitan EB, Deng L, Sim JJ, Huang L, et al. Short-term risk of serious fall injuries in older adults initiating and intensifying treatment with antihypertensive medication. Circ Cardiovasc Qual Outcomes 2016;9:222–9. https://doi.org/10.1161/circoutcomes.115.002524 
734. Krediet CT, van Lieshout JJ, Bogert LW, Immink RV, Kim Y-S, Wieling W, et al. Leg crossing improves orthostatic tolerance in healthy subjects: a placebo-controlled crossover study. Am J Physiol Heart Circ Physiol 2006;291:H1768–72. https://doi.org/10.1152/ajpheart.00287.2006 
735. Okamoto LE, Diedrich A, Baudenbacher FJ, Har-der R, Whitfield JS, Iqbal F, et al. Efficacy of servo-controlled splanchnic venous compression in the treatment of orthostatic hypotension: a randomized comparison with midodrine. Hypertension 2016;68:418–26. https://doi.org/10.1161/hypertensionaha.116.07199 
736. Okamoto LE, Celedonio JE, Smith EC, Gamboa A, Shibao CA, Diedrich A, et al. Local passive heat for the treatment of hypertension in autonomic failure. J Am Heart Assoc 2021;10:e018979. https://doi.org/10.1161/jaha.120.018979 
737. Buyken AE, von Eckardstein A, Schulte H, Cullen P, Assmann G. Type 2 diabetes mellitus and risk of coronary heart disease: results of the 10-year follow-up of the PROCAM study. Eur J Cardiovasc Prev Rehabil 2007;14:230–6. https://doi.org/10.1097/HJR.0b013e3280142037 
738. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993;328:1676–85. https://doi.org/10.1056/nejm199306103282306 
739. Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023;44:4043–140. https://doi.org/10.1093/eurheartj/ehad192 
740. Pylypchuk R, Wells S, Kerr A, Poppe K, Harwood M, Mehta S, et al. Cardiovascular risk prediction in type 2 diabetes before and after widespread screening: a derivation and validation study. Lancet 2021;397:2264–74. https://doi.org/10.1016/s0140-6736(21) 00572-9 
741. Danaei G, Fahimi S, Lu Y, Zhou B, Hajifathalian K, Di Cesare M, et al. Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331288 participants. Lancet Diabetes Endocrinol 2015;3:624–37. https://doi.org/10.1016/S2213-8587(15)00129-1 
742. Wright AK, Suarez-Ortegon MF, Read SH, Kontopantelis E, Buchan I, Emsley R, et al. Risk factor control and cardiovascular event risk in people with type 2 diabetes in primary and secondary prevention settings. Circulation 2020;142:1925–36. https://doi.org/10.1161/circulationaha.120.046783 

743. Adamsson Eryd S, Gudbjörnsdottir S, Manhem K, Rosengren A, Svensson A-M, Miftaraj M, et al. Blood pressure and complications in individuals with type 2 diabetes and no previous cardiovascular disease: national population based cohort study. BMJ 2016;354:i4070. https://doi.org/10.1136/bmj.i4070 

744. Brunström M, Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ 2016;352:i717. https://doi.org/10.1136/bmj.i717 

745. Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA 2015;313:603–15. https://doi.org/10.1001/jama.2014.18574 

746. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10 – Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens 2017;35:922–44. https://doi.org/10.1097/hjh.0000000000001276 

747. Rahman F, McEvoy JW, Ohkuma T, Marre M, Hamet P, Harrap S, et al. Effects of blood pressure lowering on clinical outcomes according to baseline blood pressure and cardiovascular risk in patients with type 2 diabetes mellitus. Hypertension 2019;73:1291–9. https://doi.org/10.1161/hypertensionaha.118.12414 

748. Agashe S, Petak S. Cardiac autonomic neuropathy in diabetes mellitus. Methodist Debakey Cardiovasc J 2018;14:251–6. https://doi.org/10.14797/mdcj-14-4-251 

749. Beddhu S, Chertow GM, Greene T, Whelton PK, Ambrosius WT, Cheung AK, et al. Effects of intensive systolic blood pressure lowering on cardiovascular events and mortality in patients with type 2 diabetes mellitus on standard glycemic control and in those without diabetes mellitus: reconciling results from ACCORD BP and SPRINT. J Am Heart Assoc 2018;7:e009326. https://doi.org/10.1161/jaha.118.009326 

750. Buckley LF, Dixon DL, Wohlford GF, Wijesinghe DS, Baker WL, Van Tassell BW. Intensive versus standard blood pressure control in SPRINT-eligible participants of ACCORD-BP. Diabetes Care 2017;40:1733–8. https://doi.org/10.2337/dc17-1366 

751. Brouwer TF, Vehmeijer JT, Kalkman DN, Berger WR, van den Born B-JH, Peters RJ, et al. Intensive blood pressure lowering in patients with and patients without type 2 diabetes: a pooled analysis from two randomized trials. Diabetes Care 2018;41:1142–8. https://doi.org/10.2337/dc17-1722 

752. Shi S, Gouskova N, Najafzadeh M, Wei LJ, Kim DH. Intensive versus standard blood pressure control in type 2 diabetes: a restricted mean survival time analysis of a randomised controlled trial. BMJ Open 2021;11:e050335. https://doi.org/10.1136/bmjopen-2021-050335 

753. Palmer SC, Mavridis D, Navarese E, Craig JC, Tonelli M, Salanti G, et al. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 2015;385:2047–56. https://doi.org/10.1016/s0140-6736(14)62459-4 

754. Ying A, Arima H, Czernichow S, Woodward M, Huxley R, Turnbull F, et al. Effects of blood pressure lowering on cardiovascular risk according to baseline body-mass index: a meta-analysis of randomised trials. Lancet 2015;385:867–74. https://doi.org/10.1016/s0140-6736(14)61171-5 

755. Nazarzadeh M, Bidel Z, Canoy D, Copland E, Wamil M, Majert J, et al. Blood pressure lowering and risk of new-onset type 2 diabetes: an individual participant data meta-analysis. Lancet 2021;398:1803–10. https://doi.org/10.1016/s0140-6736(21)01920-6 

756. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J, et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005;365:217–23. https://doi.org/10.1016/s0140-6736(05)17741-1 

757. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C, et al. A single number for advocacy and communication — worldwide more than 850 million individuals have kidney diseases. Kidney Int 2019;96:1048–50. https://doi.org/10.1016/j.kint.2019.07.012 

758. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018;392:2052–90. https://doi.org/10.1016/s0140-6736(18)31694-5 

759. Ortiz A, Sanchez-Niño MD, Crespo-Barrio M, De-Sequera-Ortiz P, Fernández-Giráldez E, García-Maset R, et al. The Spanish Society of Nephrology (SENEFRO) commentary to the Spain GBD 2016 report: keeping chronic kidney disease out of sight of health authorities will only magnify the problem. Nefrologia (Engl Ed) 2019;39:29–34. https://doi.org/10.1016/j.nefro.2018.09.002 

760. Law JP, Pickup L, Pavlovic D, Townend JN, Ferro CJ. Hypertension and cardiomyopathy associated with chronic kidney disease: epidemiology, pathogenesis and treatment considerations. J Hum Hypertens 2023;37:1–19. https://doi.org/10.1038/s41371-022-00751-4 

761. Fay KS, Cohen DL. Resistant hypertension in people with CKD: a review. Am J Kidney Dis 2021;77:110–21. https://doi.org/10.1053/j.ajkd.2020.04.017 
762. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017;389:1238–52. https://doi.org/10.1016/s0140-6736(16)32064-5 
763. Ninomiya T, Perkovic V, Turnbull F, Neal B, Barzi F, Cass A, et al. Blood pressure lowering and major cardiovascular events in people with and without chronic kidney disease: meta-analysis of randomised controlled trials. BMJ 2013;347:f5680. https://doi.org/10.1136/bmj.f5680 
764. Aggarwal R, Petrie B, Bala W, Chiu N. Mortality outcomes with intensive blood pressure targets in chronic kidney disease patients. Hypertension 2019;73:1275–82. https://doi.org/10.1161/hypertensionaha.119.12697 
765. Bangalore S, Toklu B, Gianos E, Schwartzbard A, Weintraub H, Ogedegbe G, et al. Optimal systolic blood pressure target after SPRINT: insights from a network meta-analysis of randomized trials. Am J Med 2017;130:707–19.e8. https://doi.org/ 10.1016/j.amjmed.2017.01.004 
766. Lv J, Ehteshami P, Sarnak MJ, Tighiouart H, Jun M, Ninomiya T, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ 2013;185:949–57. https://doi.org/10.1503/cmaj.121468 
767. Tsai WC, Wu HY, Peng YS, Yang J-Y, Chen H-Y, Chiu Y-L, et al. Association of intensive blood pressure control and kidney disease progression in nondiabetic patients with chro-nic kidney disease: a systematic review and meta-analysis. JAMA Intern Med 2017;177:792–9. https://doi.org/10.1001/jamainternmed.2017.0197 
768. Thompson S, Wiebe N, Padwal RS, Gyenes G, Headley SAE, Radhakrishnan J, et al. The effect of exercise on blood pressure in chronic kidney disease: a systematic review and meta-ana-lysis of randomized controlled trials. PLoS One 2019;14:e0211032. https://doi.org/10.1371/journal.pone.0211032 
769. Huang M, Lv A, Wang J, Xu N, Ma G, Zhai Z, et al. Exercise training and outcomes in hemodialysis patients: systematic review and meta-analysis. Am J Nephrol 2019;50:240–54. https://doi.org/10.1159/000502447 
770. Zhang Y, He D, Zhang W, Xing Y, Guo Y, Wang F, et al. ACE inhibitor benefit to kidney and cardiovascular outcomes for patients with non-dialysis chronic kidney disease stages 3–5: a network meta-analysis of randomised clinical trials. Drugs 2020;80:797–811. https://doi.org/10.1007/s40265-020-01290-3 
771. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med 2003;139:244–52. https://doi.org/10.7326/0003-4819-139-4-200308190-00006 
772. Xie X, Liu Y, Perkovic V, Li X, Ninomiya T, Hou W, et al. Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a Bayesian network meta-analysis of randomized clinical trials. Am J Kidney Dis 2016;67:728–41. https://doi.org/10.1053/j.ajkd.2015.10.011 
773. Wu HY, Huang JW, Lin HJ, Liao W-C, Peng Y-S, Hung K-Y, et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and Bayesian network meta-analysis. BMJ 2013;347:f6008. https://doi.org/10.1136/bmj.f6008 
774. Agarwal R, Sinha AD, Cramer AE, Balmes-Fenwick M, Dickinson JH, Ouyang F, et al. Chlorthalidone for hypertension in advanced chronic kidney disease. N Engl J Med 2021;385:2507–19. https://doi.org/10.1056/NEJMoa2110730 
775. Beddhu S, Shen J, Cheung AK, Kimmel PL, Chertow GM, Wei G, et al. Implications of early decline in eGFR due to intensive BP control for cardiovascular outcomes in SPRINT. J Am Soc Nephrol 2019;30:1523–33. https://doi.org/10.1681/asn.2018121261 
776. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med 2023;388:117–27. https://doi.org/10.1056/NEJMoa2204233 
777. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020;383:1436–46. https://doi.org/10.1056/NEJMoa2024816 
778. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med 2021;385:2252–63. https://doi.org/10.1056/NEJMoa2110956 
779. Ku E, McCulloch CE, Inker LA, Tighiouart H, Schaefer F, Wühl E, et al. Intensive BP control in patients with CKD and risk for adverse outcomes. J Am Soc Nephrol 2023;34:385–93. https://doi.org/10.1681/asn.0000000000000072 
780. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:851–60. https://doi.org/10.1056/ NEJMoa011303 
781. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H-H, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861–9. https://doi.org/10.1056/NEJMoa011161 
782. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 1997;349:1857–63. https://doi.org/10.1016/S0140-6736(96)11445-8 
783. Cruickshank JM, Thorp JM, Zacharias FJ. Bene ts and potential harm of lowering high blood pressure. Lancet 1987;1:581–4. https://doi.org/10.1016/s0140-6736(87) 90231-5 

784. Staessen J, Bulpitt C, Clement D, De Leeuw P, Fagard R, Fletcher A, et al. Relation between mortality and treated blood pressure in elderly patients with hypertension: report of the European working party on high blood pressure in the elderly. BMJ 1989;298:1552–6. https://doi.org/10.1136/bmj.298.6687.1552 

785. Böhm M, Schumacher H, Teo KK, Lonn EM, Mahfoud F, Mann JFE, et al. Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Lancet 2017;389:2226–37. https://doi.org/10.1016/s0140-6736(17)30754-7 

786. Böhm M, Ferreira JP, Mahfoud F, Duarte K, Pitt B, Zannad F, et al. Myocardial reperfusion reverses the J-curve association of cardiovascular risk and diastolic blood pressure in patients with left ventricular dysfunction and heart failure after myocardial infarction: insights from the EPHESUS trial. Eur Heart J 2020;41:1673–83. https://doi.org/10.1093/eurheartj/ehaa132 

787. McEvoy JW, Chen Y, Rawlings A, Hoogeveen RC, Ballantyne CM, Blumenthal RS, et al. Diastolic blood pressure, subclinical myocardial damage, and cardiac events: implications for blood pressure control. J Am Coll Cardiol 2016;68:1713–22. https://doi.org/10.1016/j.jacc.2016.07.754 

788. Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens 2023;41:1874–2071. https://doi.org/10.1097/hjh.0000000000003480 

789. Carvalho JJ, Baruzzi RG, Howard PF, Poulter N, Al-pers MP, Franco LJ, et al. Blood pressure in four remote populations in the INTERSALT study. Hypertension 1989;14:238–46. https://doi.org/10.1161/01.hyp.14.3.238 

790. Birrane JP, Foschi M, Sacco S, McEvoy JW. Another nail in the coffin of causality for the diastolic blood pressure J curve. Hypertension 2022;79:794–7. https://doi.org/10.1161/hypertensionaha.122.18997 

791. Mueller NT, Noya-Alarcon O, Contreras M, Appel LJ, Dominguez-Bello MG. Association of age with blood pressure across the lifespan in isolated Yanomami and Yekwana villages. JAMA Cardiol 2018;3:1247–9. https://doi.org/10.1001/jamacardio.2018.3676 

792. Ilkun OL, Greene T, Cheung AK, Whelton PK, Wei G, Boucher RE, et al. The in uence of baseline diastolic blood pressure on the effects of intensive blood pressure lowering on cardiovascular outcomes and all-cause mortality in type 2 diabetes. Diabetes Care 2020;43:1878–84. https://doi.org/10.2337/dc19-2047 

793. Shihab S, Boucher RE, Abraham N, Wei G, Beddhu S. Influence of baseline diastolic blood pressure on the effects of intensive systolic blood pressure lowering on the risk of stroke. Hypertension 2022;79:785–93. https://doi.org/10.1161/hypertensionaha.121.18172 

794. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2022;43:561–632. https://doi.org/10.1093/eurheartj/ehab395 

795. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368 

796. Mancusi C, de Simone G, Brguljan Hitij J, Sudano I, Mahfoud F, Parati G, et al. Management of patients with combined arterial hypertension and aortic valve stenosis: a consensus document from the Council on Hypertension and Council on Valvular Heart Disease of the European Society of Cardiology, the European Association of Cardiovascular Imaging (EACVI), and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J Cardiovasc Pharmacother 2021;7:242–50. https://doi.org/10.1093/ehjcvp/pvaa040 

797. Nielsen OW, Sajadieh A, Sabbah M, Greve AM, Olsen MH, Boman K, et al. Assessing optimal blood pressure in patients with asymptomatic aortic valve stenosis: the simvastatin ezetimibe in aortic stenosis study (SEAS). Circulation 2016;134:455–68. https://doi.org/10.1161/circulationaha.115.021213 

798. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 focused update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2023;44:3627–39. https://doi.org/10.1093/eurheartj/ehad195 

799. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJV, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet 2003;362:777–81. https://doi.org/10.1016/s0140-6736(03)14285-7 

800. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 2014;370:1383–92. https://doi.org/10.1056/NEJMoa1313731 

801. Nazarzadeh M, Pinho-Gomes AC, Bidel Z, Canoy D, Dehghan A, Byrne KS, et al. Genetic susceptibility, elevated blood pressure, and risk of atrial brillation: a Mendelian randomization study. Genome Med 2021;13:38. https://doi.org/10.1186/s13073-021-00849-3 

802. Emdin CA, Anderson SG, Salimi-Khorshidi G, Woodward M, MacMahon S, Dwyer T, et al. Usual blood pressure, atrial brillation and vascular risk: evidence from 4.3 million adults. Int J Epidemiol 2017;46:162–72. https://doi.org/10.1093/ije/dyw053 
803. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial brillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial brillation of the European Society of Cardio-logy (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 2021;42:373–498. https://doi.org/10.1093/eurheartj/ehaa612 
804. Alber J, Alladi S, Bae HJ, Barton DA, Beckett LA, Bell JM, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimers Dement (NY) 2019;5:107–17. https://doi.org/10.1016/j.trci.2019.02.001 
805. Georgakis MK, Duering M, Wardlaw JM, Dichgans M. WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis. Neurology 2019;92:e1298–308. https://doi.org/10.1212/wnl.0000000000007142 
806. Jokinen H, Koikkalainen J, Laakso HM, Melkas S, Nieminen T, Brander A, et al. Global burden of small vessel disease-related brain changes on MRI predicts cognitive and functional decline. Stroke 2020;51:170–8. https://doi.org/10.1161/strokeaha.119.026170 
807. Potter T, Lioutas VA, Tano M, Pan A, Meeks J, Woo D, et al. Cognitive impairment after intracerebral hemorrhage: a systematic review of current evidence and knowledge gaps. Front Neurol 2021;12:716632. https://doi.org/10.3389/fneur.2021.716632 
808. Wang F, Hua S, Zhang Y, Zhu J, Liu R, Jiang Z. Association between small vessel disease markers, medial temporal lobe atrophy and cognitive impairment after stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2021;30:105460. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105460 
809. Ungvari Z, Toth P, Tarantini S, Prodan CI, Sorond F, Merkely B, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol 2021;17:639–54. https://doi.org/10.1038/s41581-021-00430-6 
810. Kelly D, Rothwell PM. Disentangling the multiple links between renal dysfunction and cerebrovascular disease. J Neurol Neurosurg Psychiatry 2020;91:88–97. https://doi.org/10.1136/jnnp-2019-320526 
811. Papanastasiou CA, Theochari CA, Zareifopoulos N, Arfaras-Melainis A, Giannakoulas G, Karamitsos TD, et al. Atrial brillation is associated with cognitive impairment, all-cause dementia, vascular dementia, and Alzheimer’s disease: a systematic review and meta-analysis. J Gen Intern Med 2021;36:3122–35. https://doi.org/10.1007/s11606- 021-06954-8 
812. Li J, Wu Y, Zhang D, Nie J. Associations between heart failure and risk of dementia: a PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020;99:e18492. https://doi.org/10.1097/md.0000000000018492 
813. Canavan M, O’Donnell MJ. Hypertension and cognitive impairment: a review of mechanisms and key concepts. Front Neurol 2022;13:821135. https://doi.org/10.3389/fneur.2022.821135 
814. Dawson J, Béjot Y, Christensen LM, De Marchis GM, Dichgans M, Hagberg G, et al. European Stroke Organisation (ESO) guideline on pharmacological interventions for long-term secondary prevention after ischaemic stroke or transient ischaemic attack. Eur Stroke J 2022;7:I–XLI. https://doi.org/10.1177/23969873221100032 
815. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke 2021;52:e364–467. https://doi.org/10.1161/str.0000000000000375 
816. Zonneveld TP, Richard E, Vergouwen MD, Nederkoorn PJ, de Haan RJ, Roos YB, et al. Blood pressure-lowering treatment for preventing recurrent stroke, major vascular events, and dementia in patients with a history of stroke or transient ischaemic attack. Cochrane Database Syst Rev 2018;7:CD007858. https://doi.org/10.1002/14651858.CD007858.pub2 
817. Boncoraglio GB, Del Giovane C, Tramacere I. Antihypertensive drugs for secondary prevention after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Stroke 2021;52:1974–82. https://doi.org/10.1161/strokeaha.120.031945 
818. Fischer U, Cooney MT, Bull LM, Silver LE, Chalmers J, Anderson CS, et al. Acute post-stroke blood pressure relative to premorbid levels in intracerebral haemorrhage versus major ischaemic stroke: a population-based study. Lancet Neurol 2014;13:374–84. https://doi.org/10.1016/s1474-4422(14)70031-6 
819. Yusuf S, Diener HC, Sacco RL, Cotton D, Ôunpuu S, Lawton WA, et al. Telmisartan to prevent recurrent stroke and cardiovascular events. N Engl J Med 2008;359:1225–37. https://doi.org/10.1056/NEJMoa0804593 
820. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet 2001;358:1033–41. https://doi.org/10.1016/s0140-6736(01)06178-5 
821. McGurgan IJ, Kelly PJ, Turan TN, Rothwell PM. Long-term secondary prevention: management of blood pressure after a transient ischemic attack or stroke. Stroke 2022;53:1085–103. https://doi.org/10.1161/strokeaha.121.035851 
822. Rudd AG, Bowen A, Young GR, James MA. The la-test national clinical guideline for stroke. Clin Med (Lond) 2017;17:154–5. https://doi.org/10.7861/clinmedicine.17-2-154 
823. Arima H, Chalmers J, Woodward M, Anderson C, Rod-gers A, Davis S, et al. Lower target blood pressures are safe and effective for the prevention of recurrent stroke: the PROGRESS trial. J Hypertens 2006;24:1201–8. https://doi.org/10.1097/01.hjh. 0000226212.34055.86 

824. Kitagawa K, Yamamoto Y, Arima H, Maeda T, Sunami N, Kanzawa T, et al. Effect of standard vs intensive blood pressure control on the risk of recurrent stroke: a randomized clinical trial and meta-analysis. JAMA Neurol 2019;76:1309–18. https://doi.org/10.1001/jamaneurol.2019.2167 

825. Suchard MA, Schuemie MJ, Krumholz HM, You SC, Chen R, Pratt N, et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. Lancet 2019;394:1816–26. https://doi.org/10.1016/s0140-6736(19)32317-7 

826. Wang WT, You LK, Chiang CE, Sung S-H, Chu-ang S-Y, Cheng H-M, et al. Comparative effectiveness of blood pressure-lowering drugs in patients who have already suffered from stroke: traditional and Bayesian network meta-analysis of randomized trials. Medicine (Baltimore) 2016;95:e3302. https://doi.org/10.1097/md.0000000000003302 

827. Bath PM, Scutt P, Blackburn DJ, Ankolekar S, Krishnan K, Ballard C, et al. Intensive versus guideline blood pressure and lipid lowering in patients with previous stroke: main results from the pilot ‘Prevention of Decline in Cognition after Stroke Trial’ (PODCAST) randomised controlled trial. PLoS One 2017;12:e0164608. https://doi.org/10.1371/journal.pone.0164608 

828. Mant J, McManus RJ, Roalfe A, Fletcher K, Taylor CJ, Martin U, et al. Different systolic blood pressure targets for people with history of stroke or transient ischaemic attack: PAST-BP (Prevention After Stroke — Blood Pressure) randomised controlled trial. BMJ 2016;352:i708. https://doi.org/10.1136/bmj.i708 

829. Kolmos M, Christoffersen L, Kruuse C. Recurrent ische-mic stroke — a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2021;30:105935. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105935 

830. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020;396:413–46. https://doi.org/10.1016/s0140-6736(20)30367-6 

831. Ou YN, Tan CC, Shen XN, Xu W, Hou X-H, Dong Q, et al. Blood pressure and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 209 prospective studies. Hypertension 2020;76:217–25. https://doi.org/10.1161/hypertensionaha.120.14993 

832. Abell JG, Kivimäki M, Dugravot A, Tabak AG, Fayosse A, Shipley M, et al. Association between systolic blood pressure and dementia in the Whitehall II cohort study: role of age, duration, and threshold used to de ne hypertension. Eur Heart J 2018;39:3119–25. https://doi.org/10.1093/eurheartj/ehy288 

833. Alpérovitch A, Blachier M, Soumaré A, Ritchie K, Dartigues J-F, Richard-Harston S, et al. Blood pressure variability and risk of dementia in an elderly cohort, the Three-City study. Alzheimers Dement 2014;10:S330–337. https://doi.org/10.1016/j.jalz.2013.05.1777 

834. McGrath ER, Beiser AS, DeCarli C, Plourde KL, Vasan RS, Greenberg S, et al. Blood pressure from mid- to late life and risk of incident dementia. Neurology 2017;89:2447–54. https://doi.org/10.1212/wnl.0000000000004741 

835. Skoog I, Nilsson L, Persson G, Lernfelt B, Landahl S, Palmertz B, et al. 15-year longitudinal study of blood pressure and dementia. Lancet 1996;347:1141–5. https://doi.org/10.1016/s0140-6736(96)90608-x 

836. Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia aging study. JAMA 1995;274:1846–51. https://doi.org/10.1001/jama.1995.03530230032026 

837. Gottesman RF, Albert MS, Alonso A, Coker LH, Coresh J, Davis SM, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the atherosclerosis risk in Communities (ARIC) cohort. JAMA Neurol 2017;74:1246–54. https://doi.org/10.1001/jamaneurol.2017.1658 

838. Levine DA, Springer MV, Brodtmann A. Blood pressure and vascular cognitive impairment. Stroke 2022;53:1104–13. https://doi.org/10.1161/strokeaha.121.036140 

839. Bosch J, O’Donnell M, Swaminathan B, Lonn EM, Sharma M, Dagenais G, et al. Effects of blood pressure and lipid lowering on cognition: results from the HOPE-3 study. Neurology 2019;92:e1435–46. https://doi.org/10.1212/wnl.0000000000007174 

840. Applegate WB, Pressel S, Wittes J, Luhr J, Shekelle RB, Camel GH, et al. Impact of the treatment of isolated systolic hypertension on behavioral variables. Results from the systolic hypertension in the elderly program. Arch Intern Med 1994;154:2154–60. https://doi.org/10.1001/archinte.1994.00420190047006 

841. Williamson JD, Pajewski NM, Auchus AP, Bryan RN, Chelune G, Cheung AK, et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 2019;321:553–61. https://doi.org/10.1001/jama.2018.21442 

842. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol 2008;7:683–9. https://doi.org/10.1016/s1474-4422(08)70143-1 

843. Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens 2003;21:875–86. https://doi.org/10.1097/00004872-200305000-00011 

844. White WB, Wakefield DB, Moscufo N, Guttmann CRG, Kaplan RF, Bohannon RW, et al. Effects of intensive versus standard ambulatory blood pressure control on cerebrovascular outcomes in older people (INFINITY). Circulation 2019;140:1626–35. https://doi.org/10.1161/circulationaha.119.041603 
845. Tzourio C, Anderson C, Chapman N, Woodward M, Neal B, MacMahon S, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med 2003;163:1069–75. https://doi.org/10.1001/archinte.163.9.1069 
846. Peters R, Yasar S, Anderson CS, Andrews S, Antikainen R, Arima H, et al. Investigation of antihypertensive class, dementia, and cognitive decline: a meta-analysis. Neurology 2020;94:e267–81. https://doi.org/10.1212/wnl.0000000000008732 
847. Yang W, Luo H, Ma Y, Si S, Zhao H. Effects of antihypertensive drugs on cognitive function in elderly patients with hypertension: a review. Aging Dis 2021;12:841–51. https://doi.org/10.14336/ad.2020.1111 
848. Iseli R, Nguyen VTV, Sharmin S, Reijnierse EM, Lim WK, Maier AB, et al. Orthostatic hypotension and cognition in older adults: a systematic review and meta-analysis. Exp Gerontol 2019;120:40–9. https://doi.org/10.1016/j.exger.2019.02.017 
849. Ernst ME, Ryan J, Chowdhury EK, Margolis KL, Beilin LJ, Reid CM, et al. Long-term blood pressure variability and risk of cognitive decline and dementia among older adults. J Am Heart Assoc 2021;10:e019613. https://doi.org/10.1161/jaha.120.019613 
850. Nakamura K, Stefanescu Schmidt A. Treatment of hypertension in coarctation of the aorta. Curr Treat Options Cardiovasc Med 2016;18:40. https://doi.org/10.1007/s11936- 016-0462-x 
851. Dijkema EJ, Leiner T, Grotenhuis HB. Diagnosis, imaging and clinical management of aortic coarctation. Heart 2017;103:1148–55. https://doi.org/10.1136/heartjnl-2017-311173 
852. Panzer J, Bové T, Vandekerckhove K, De Wolf D. Hypertension after coarctation repair — a systematic review. Transl Pediatr 2022;11:270–9. https://doi.org/10.21037/tp-21-418 
853. Schaefer BM, Lewin MB, Stout KK, Gill E, Prueitt A, Byers PH, et al. The bicuspid aortic valve: an integrated phenotypic classification of lea et morphology and aortic root shape. Heart 2008;94:1634–8. https://doi.org/10.1136/hrt.2007.132092 
854. Wang J, Deng W, Lv Q, Li Y, Liu T, Xie M, et al. Aortic dilatation in patients with bicuspid aortic valve. Front Physiol 2021;12:615175. https://doi.org/10.3389/fphys.2021.615175 
855. Davies RR, Kaple RK, Mandapati D, Gallo A, Botta DM, Elefteriades JA, et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann Thorac Surg 2007;83:1338–44. https://doi.org/10.1016/j.athoracsur.2006.10.074 
856. Lindman BR, Otto CM. Time to treat hypertension in patients with aortic stenosis. Circulation 2013;128:1281–3. https://doi.org/10.1161/circulationaha.113.005275

857. Erbel R, Aboyans V, Boileau C, Bossone E, Di Bartolomeo R, Eggebrecht H, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2873–926. https://doi.org/10.1093/eurheartj/ehu281 
858. Shores J, Berger KR, Murphy EA, Pyeritz RE. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med 1994;330:1335–41. https://doi.org/10.1056/nejm199405123301902 
859. Groenink M, den Hartog AW, Franken R, Radonic T, de Waard V, Timmermans J, et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J 2013;34:3491–500. https://doi.org/10.1093/eurheartj/eht334 
860. Pitcher A, Spata E, Emberson J, Davies K, Halls H, Holland L, et al. Angiotensin receptor blockers and β blockers in Marfan syndrome: an individual patient data meta-analysis of randomised trials. Lancet 2022;400:822–31. https://doi.org/10.1016/s0140-6736(22)01534-3 
861. Mazzolai L, Rodriguez-Palomares JF, Teixido-Tura G, Lanzi S, Boc V, Bossone E, et al. 2024 ESC Guidelines for the management peripheral arterial and aortic diseases. Eur Heart J 2024. https://doi.org/10.1093/eurheartj/ehae179 
862. Rechel B, Mladovsky P, Ingleby D, Mackenbach JP, McKee M. Migration and health in an increasingly diverse Europe. Lancet 2013;381:1235–45. https://doi.org/10.1016/s0140-6736(12)62086-8 
863. Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS One 2016;11:e0147601. https://doi.org/10.1371/journal.pone.0147601 
864. Whelton PK, Einhorn PT, Muntner P, Appel LJ, Cushman WC, Diez Roux AV, et al. Research needs to improve hypertension treatment and control in African Americans. Hypertension 2016;68:1066–72. https://doi.org/10.1161/hypertensionaha.116.07905 
865. Kaufman JS, Cooper RS, McGee DL. Socioeconomic status and health in blacks and whites: the problem of residual confounding and the resiliency of race. Epidemiology 1997;8:621–8. 
866. Agyemang C, van Oeffelen AA, Norredam M, Kappelle LJ, Klijn CJM, Bots ML, et al. Socioeconomic inequalities in stroke incidence among migrant groups: analysis of nationwide data. Stroke 2014;45:2397–403. https://doi.org/10.1161/strokeaha.114.005505 
867. Mehanna M, Gong Y, McDonough CW, Beitelshees AL, Gums JG, Chapman AB, et al. Blood pressure response to metoprolol and chlorthalidone in European and African Americans with hypertension. J Clin Hypertens (Greenwich) 2017;19:1301–8. https://doi.org/10.1111/jch.13094 

868. Faconti L, McNally RJ, Farukh B, Adeyemi O, Cruickshank JK, Wilkinson IB, et al. Differences in hypertension phenotypes between Africans and Europeans: role of environment. J Hypertens 2020;38:1278–85. https://doi.org/10.1097/hjh.0000000000002403 

869. Schutte AE, Kruger R, Gafane-Matemane LF, Breet Y, Strauss-Kruger M, Cruickshank JK, et al. Ethnicity and arterial stiffness. Arterioscler Thromb Vasc Biol 2020;40:1044–54. https://doi.org/10.1161/atvbaha.120.313133 

870. Erlinger TP, Vollmer WM, Svetkey LP, Appel LJ. The potential impact of nonpharmacologic population-wide blood pressure reduction on coronary heart disease events: pronounced benefits in African-Americans and hypertensives. Prev Med 2003;37: 327–33. https://doi.org/10.1016/s0091-7435(03)00140-3 

871. The ALLHAT Officers Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002;288: 2981–97. https://doi.org/10.1001/jama.288.23.2981 

872. Wright JT Jr, Dunn JK, Cutler JA, Davis BR, Cushman WC, Ford CE, et al. Outcomes in hypertensive black and nonblack patients treated with chlorthalidone, amlodipine, and lisinopril. JAMA 2005;293:1595–608. https://doi.org/10.1001/jama.293.13.1595 

873. Wright JT Jr, Harris-Haywood S, Pressel S, Barzilay J, Baimbridge C, Bareis CJ, et al. Clinical outcomes by race in hypertensive patients with and without the metabolic syndrome: antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). Arch Intern Med 2008;168:207–17. https://doi.org/10.1001/archinternmed.2007.66 

874. Ojji DB, Mayosi B, Francis V, Badri M, Cornelius V, Smythe W, et al. Comparison of dual therapies for lowering blood pressure in Black Africans. N Engl J Med 2019;380:2429–39. https://doi.org/10.1056/NEJMoa1901113 

875. van der Linden EL, Couwenhoven BN, Beune E, Daams JG, van den Born B-JH, Agyemang C. Hypertension awareness, treatment and control among ethnic minority populations in Europe: a systematic review and meta-ana-lysis. J Hypertens 2021;39:202–13. https://doi.org/10.1097/hjh.0000000000002651 

876. Agyemang C, Nyaaba G, Beune E, Meeks K, Owusu-Dabo E, Addo J, et al. Variations in hypertension awareness, treatment, and control among Ghanaian migrants living in Amsterdam, Berlin, London, and nonmigrant Ghanaians living in rural and urban Ghana — the RODAM study. J Hypertens 2018;36:169–77. https://doi.org/10.1097/hjh.0000000000001520 

877. van Laer SD, Snijder MB, Agyemang C, Peters RJ, van den Born BH. Ethnic differences in hypertension prevalence and contributing determinants — the HELIUS study. Eur J Prev Cardiol 2018;25:1914–22. https://doi.org/10.1177/2047487318803241 

878. Costello HM, Gumz ML. Circadian rhythm, clock genes, and hypertension: recent advances in hypertension. Hypertension 2021;78:1185–96. https://doi.org/10.1161/hypertensionaha.121.14519 

879. O’Brien E, Sheridan J, O’Malley K. Dippers and non-dippers. Lancet 1988;2:397. https://doi.org/10.1016/s0140-6736(88)92867-x 

880. Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med 2006;354:2368–74. https://doi.org/10.1056/NEJMra060433 

881. Abdalla M, Goldsmith J, Muntner P, Diaz KM, Reynolds K, Schwartz JE, et al. Is isolated nocturnal hypertension a reproducible phenotype? Am J Hypertens 2016;29:33–8. https://doi.org/10.1093/ajh/hpv058 

882. Mancia G, Facchetti R, Bombelli M, Quarti-Trevano F, Cuspidi C, Grassi G. Short- and long-term reproducibility of nighttime blood pressure phenotypes and nocturnal blood pressure reduction. Hypertension 2021;77:1745–55. https://doi.org/10.1161/hypertensionaha.120.16827 

883. Nolde JM, Kiuchi MG, Lugo-Gavidia LM, Ho JK, Chan J, Matthews VB, et al. Nocturnal hypertension: a common phenotype in a tertiary clinical setting associated with increased arterial stiffness and central blood pressure. J Hypertens 2021;39:250–8. https://doi.org/10.1097/hjh.0000000000002620 

884. Thomas SJ, Booth JN III, Jaeger BC, Hubbard D, Sakhuja S, Abdalla M, et al. Association of sleep characteristics with nocturnal hypertension and nondipping blood pressure in the CARDIA study. J Am Heart Assoc 2020;9:e015062. https://doi.org/10.1161/jaha.119.015062 

885. Kario K, Hoshide S, Haimoto H, Yamagiwa K, Uchiba K, Nagasaka S, et al. Sleep blood pressure self-measured at home as a novel determinant of organ damage: Japan morning surge home blood pressure (J-HOP) study. J Clin Hypertens (Greenwich) 2015;17: 340–8. https://doi.org/10.1111/jch.12500 

886. de la Sierra A, Gorostidi M, Banegas JR, Segura J, de la Cruz JJ, Ruilope LM, et al. Nocturnal hypertension or nondipping: which is better associated with the cardiovascular risk profile? Am J Hypertens 2014;27:680–7. https://doi.org/10.1093/ajh/hpt175 

887. Wijkman M, Länne T, Engvall J, Lindström T, Östgren CJ, Nystrom FH, et al. Masked nocturnal hypertension — a novel marker of risk in type 2 diabetes. Diabetologia 2009;52:1258–64. https://doi.org/10.1007/s00125-009-1369-9 

888. Muntner P, Lewis CE, Diaz KM, Carson AP, Kim Y, Calhoun D, et al. Racial differences in abnormal ambulatory blood pressure monitoring measures: results from the coronary artery risk development in young adults (CARDIA) study. Am J Hypertens 2015;28:640–8. https://doi.org/10.1093/ajh/hpu193

889. Thomas SJ, Booth JN III, Bromfield SG, Seals SR, Spruill TM, Ogedegbe G, et al. Clinic and ambulatory blood pressure in a population-based sample of African Americans: the Jackson heart study. J Am Soc Hypertens 2017;11:204–212.e205. https://doi.org/10.1016/j.jash.2017.02.001 
890. Husain A, Lin FC, Tuttle LA, Olsson E, Viera AJ. The reproducibility of racial differences in ambulatory blood pressure phenotypes and measurements. Am J Hypertens 2017;30:961–7. https://doi.org/10.1093/ajh/hpx079 
891. Li Y, Wang JG. Isolated nocturnal hypertension: a disease masked in the dark. Hypertension 2013;61:278–83. https://doi.org/10.1161/hypertensionaha.111.00217 
892. Hoshide S, Kario K, de la Sierra A, Bilo G, Schillaci G, Banegas JR, et al. Ethnic differences in the degree of morning blood pressure surge and in its determinants between Japanese and European hypertensive subjects: data from the ARTEMIS study. Hypertension 2015;66:750–6. https://doi.org/10.1161/hypertensionaha.115.05958 
893. Banegas JR, Ruilope LM, de la Sierra A, Gorostidi M, Segura J, Martell N, et al. High prevalence of masked uncontrolled hypertension in people with treated hypertension. Eur Heart J 2014;35:3304–12. https://doi.org/10.1093/eurheartj/ehu016 
894. Huang JF, Zhang DY, Sheng CS, An D-W, Li M, Cheng Y-B, et al. Isolated nocturnal hypertension in relation to host and environmental factors and clock genes. J Clin Hypertens (Greenwich) 2022;24:1255–62. https://doi.org/10.1111/jch.14532 
895. Matsumoto T, Tabara Y, Murase K, Setoh K, Kawaguchi T, Nagashima S, et al. Nocturia and increase in nocturnal blood pressure: the Nagahama study. J Hypertens 2018;36:2185–92. https://doi.org/10.1097/hjh.0000000000001802 
896. Seif F, Patel SR, Walia HK, Rueschman M, Bhatt DL, Blumenthal RS, et al. Obstructive sleep apnea and diurnal nondipping hemodynamic indices in patients at increased cardiovascular risk. J Hypertens 2014;32:267–75. https://doi.org/10.1097/hjh.0000000000000011 
897. Kimura G, Dohi Y, Fukuda M. Salt sensitivity and circadian rhythm of blood pressure: the keys to connect CKD with cardiovascular events. Hypertens Res 2010;33:515–20. https://doi.org/10.1038/hr.2010.47 
898. Drawz PE, Alper AB, Anderson AH, Brecklin CS, Charleston J, Chen J, et al. Masked hypertension and elevated nighttime blood pressure in CKD: prevalence and association with target organ damage. Clin J Am Soc Nephrol 2016;11:642–52. https://doi.org/10.2215/cjn.08530815 
899. Kanno A, Metoki H, Kikuya M, Terawaki H, Hara A, Hashimoto T, et al. Usefulness of assessing masked and white-coat hypertension by ambulatory blood pressure monitoring for determining prevalent risk of chronic kidney disease: the Ohasama study. Hypertens Res 2010;33:1192–8. https://doi.org/10.1038/hr.2010.139 
900. Kushiro T, Kario K, Saito I, Teramukai S, Sato Y, Okuda Y, et al. Increased cardiovascular risk of treated white coat and masked hypertension in patients with diabetes and chronic kidney disease: the HONEST study. Hypertens Res 2017;40:87–95. https://doi.org/10.1038/hr.2016.87 
901. Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med 2002;347:797–805. https://doi.org/10.1056/NEJMoa013410 
902. Cuspidi C, Sala C, Tadic M, Gherbesi E, De Giorgi A, Grassi G, et al. Clinical and prognostic significance of a reverse dipping pattern on ambulatory monitoring: an updated review. J Clin Hypertens (Greenwich) 2017;19:713–21. https://doi.org/10.1111/jch.13023 
903. Wu Q, Hong M, Xu J, Tang X, Zhu L, Gao P, et al. Diurnal blood pressure pattern and cardiac damage in hypertensive patients with primary aldosteronism. Endocrine 2021;72:835–43. https://doi.org/10.1007/s12020-021-02606-3 
904. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime blood pressure phenotype and cardiovascular prognosis: practitioner-based nation-wide JAMP study. Circulation 2020;142:1810–20. https://doi.org/10.1161/circulationaha.120.049730 
905. Kario K, Hoshide S, Nagai M, Okawara Y, Kanegae H. Sleep and cardiovascular outcomes in relation to nocturnal hypertension: the J-HOP nocturnal blood pressure study. Hypertens Res 2021;44:1589–96. https://doi.org/10.1038/s41440-021-00709-y 
906. Wang Q, Wang Y, Wang J, Zhang L, Zhao MH. Nocturnal systolic hypertension and adverse prognosis in patients with CKD. Clin J Am Soc Nephrol 2021;16:356–64. https://doi.org/10.2215/cjn.14420920 
907. Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension 2011;57:3–10. https://doi.org/10.1161/hypertensionaha.109.133900 
908. Staessen JA, Thijs L, Fagard R, O’Brien ET, Clement D, de Leeuw PW, et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. JAMA 1999;282:539–46. https://doi.org/10.1001/jama.282.6.539 
909. Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension 1994;24:793–801. https://doi.org/10.1161/01.hyp.24.6.793 
910. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens 2002;20: 2183–9. https://doi.org/10.1097/00004872-200211000-00017 
911. Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Ambulatory blood pressure as an independent determinant of brain atrophy and cognitive function in elderly hypertension. J Hypertens 2008;26:1636–41. https://doi.org/10.1097/HJH.0b013e3283018333 

912. Staessen JA, Thijs L, Ohkubo T, Kikuya M, Richart T, Boggia J, et al. Thirty years of research on diagnostic and therapeutic thresholds for the self-measured blood pressure at home. Blood Press Monit 2008;13:352–65. https://doi.org/10.1097/ MBP.0b013e3283108f93 

913. Kario K, Shimada K. Risers and extreme-dippers of nocturnal blood pressure in hypertension: antihypertensive strategy for nocturnal blood pressure. Clin Exp Hypertens 2004;26:177–89. https://doi.org/10.1081/ceh-120028556 

914. Tan X, Sundström J, Lind L, Franzon K, Kilander L, Benedict C, et al. Reverse dipping of systolic blood pressure is associated with increased dementia risk in older men: a longitudinal study over 24 years. Hypertension 2021;77:1383–90. https://doi.org/10.1161/hypertensionaha.120.16711 

915. Judd E, Calhoun DA. Apparent and true resistant hypertension: definition, prevalence and outcomes. J Hum Hypertens 2014;28:463–8. https://doi.org/10.1038/jhh.2013.140 

916. Denker MG, Haddad DB, Townsend RR, Cohen DL. Blood pressure control 1 year after referral to a hypertension specialist. J Clin Hypertens (Greenwich) 2013;15:624–9. https://doi.org/10.1111/jch.12146 

917. Blumenthal JA, Hinderliter AL, Smith PJ, Mabe S, Watkins LL, Craighead L, et al. Effects of lifestyle modi cation on patients with resistant hypertension: results of the TRIUMPH randomized clinical trial. Circulation 2021;144:1212–26. https://doi.org/10. 1161/circulationaha.121.055329 

918. Hung SC, Kuo KL, Peng CH, Wu C-H, Lien Y-C, Wang Y-C, et al. Volume overload correlates with cardiovascular risk factors in patients with chronic kidney disease. Kidney Int 2014;85:703–9. https://doi.org/10.1038/ki.2013.336 

919. Taler SJ, Textor SC, Augustine JE. Resistant hypertension: comparing hemodynamic management to specialist care. Hypertension 2002;39:982–8. https://doi.org/10.1161/01.hyp.0000016176.16042.2f 

920. Gaddam KK, Nishizaka MK, Pratt-Ubunama MN, Pimenta E, Aban I, Oparil S, et al. Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion. Arch Intern Med 2008;168:1159–64. https://doi.org/10.1001/archinte.168.11.1159 

921. Roush GC, Ernst ME, Kostis JB, Tandon S, Sica DA. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension 2015;65:1041–6. https://doi.org/10.1161/hypertensionaha.114.05021 

922. Peterzan MA, Hardy R, Chaturvedi N, Hughes AD. Meta-analysis of dose-response relationships for hydrochlorothiazide, chlorthalidone, and bendro umethiazide on blood pressure, serum potassium, and urate. Hypertension 2012;59:1104–9. https://doi.org/10.1161/hypertensionaha.111.190637 

923. Chen C, Zhu XY, Li D, Lin Q, Zhou K. Clinical efficacy and safety of spironolactone in patients with resistant hypertension: a systematic review and meta-analysis. Medicine (Baltimore) 2020;99:e21694. https://doi.org/10.1097/md.0000000000021694 

924. Zhao D, Liu H, Dong P, Zhao J. A meta-analysis of add-on use of spironolactone in patients with resistant hypertension. Int J Cardiol 2017;233:113–7. https://doi.org/10. 1016/j.ijcard.2016.12.158 

925. Bazoukis G, Thomopoulos C, Tsioufis C. Effect of mine-ralocorticoid antagonists on blood pressure lowering: overview and meta-analysis of randomized controlled trials in hypertension. J Hypertens 2018;36:987–94. https://doi.org/10.1097/hjh.0000000000001671 

926. Oxlund CS, Henriksen JE, Tarnow L, Schousboe K, Gram J, Jacobsen IA. Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus: a double blind randomized clinical trial. J Hypertens 2013;31:2094–102. https://doi.org/10.1097/HJH.0b013e3283638b1a 

927. Desai R, Park H, Brown JD, Mohandas R, Pepine CJ, Smith SM. Comparative safety and effectiveness of aldosterone antagonists versus beta-blockers as fourth agents in patients with apparent resistant hypertension. Hypertension 2022;79:2305–15. https://doi.org/10.1161/hypertensionaha.122.19280 

928. Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med 2004;351:543–51. https://doi.org/10.1056/NEJMoa040135 

929. Agarwal R, Rossignol P, Romero A, Garza D, Mayo MR, Warren S, et al. Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 2019;394:1540–50. https://doi.org/10.1016/s0140-6736(19)32135-x 

930. Burton TJ, Mackenzie IS, Balan K, Koo B, Bird N, Soloviev DV, et al. Evaluation of the sensitivity and specificity of (11)C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn’s adenomas. J Clin Endocrinol Metab 2012;97:100–9. https://doi.org/10.1210/jc.2011-1537 

931. Rossi GP, Maiolino G, Seccia TM. Adrenal venous sampling: where do we stand? Endocrinol Metab Clin North Am 2019;48:843–58. https://doi.org/10.1016/j.ecl.2019.08.012 

932. Wu X, Senanayake R, Goodchild E, Bashari WA, Salsbury J, Cabrera CP, et al. [(11)C] metomidate PET-CT versus adrenal vein sampling for diagnosing surgically curable 
primary aldosteronism: a prospective, within-patient trial. Nat Med 2023;29:190–202. https://doi.org/10.1038/s41591-022-02114-5

933. Lenzini L, Prisco S, Caroccia B, Rossi GP. Saga of familial hyperaldosteronism: yet a new channel. Hypertension 2018;71:1010–4. https://doi.org/10.1161/hypertensionaha.118.11150

934. Parthasarathy HK, Ménard J, White WB, Young WF, Williams GH, Williams B, et al. A double-blind, randomized study comparing the antihypertensive effect of eplerenone and spironolactone in patients with hypertension and evidence of primary aldosteronism. J Hypertens 2011;29:980–90. https://doi.org/10.1097/HJH.0b013e3283455ca5 
935. Shagjaa T, Sanga V, Rossi GP. Skin hyperpigmentation due to post-surgical adrenal insufficiency regressed with the dexamethasone treatment. J Clin Med 2022;11:5379. https://doi.org/10.3390/jcm11185379 
936. Sanga V, Lenzini L, Seccia TM, Rossi GP. Familial hyperaldosteronism type 1 and pregnancy: successful treatment with low dose dexamethasone. Blood Press 2021;30:133–7. https://doi.org/10.1080/08037051.2020.1863771 
937. Persu A, Touzé E, Mousseaux E, Barral X, Joffre F, Plo-uin P-F. Diagnosis and management of bromuscular dysplasia: an expert consensus. Eur J Clin Invest 2012;42:338–47. https://doi.org/10.1111/j.1365-2362.2011.02577.x 
938. Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, et al. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med 2009;361:1953–62. https://doi.org/10.1056/NEJMoa0905368 
939. Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM, et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med 2014;370:13–22. https://doi.org/10.1056/NEJMoa1310753 
940. Bailey SR, Beckman JA, Dao TD, Misra S, Sobieszczyk PS, White CJ, et al. ACC/AHA/SCAI/SIR/SVM 2018 appropriate use criteria for peripheral artery intervention: a report of the American College of Cardiology Appropriate Use Criteria Task Force, American Heart Association, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, and Society for Vascular Medicine. J Am Coll Cardiol 2019;73:214–37. https://doi.org/10.1016/j.jacc.2018.10.002 
941. Trinquart L, Mounier-Vehier C, Sapoval M, Gagnon N, Plouin PF. Efficacy of revascularization for renal artery stenosis caused by bromuscular dysplasia: a systematic review and meta-analysis. Hypertension 2010;56:525–32. https://doi.org/10.1161/hypertensionaha.110.152918 
942. Sanga V, Bertoli E, Crimì F, Barbiero G, Battistel M, Teresa Seccia M, et al. Pickering syndrome: an overlooked renovascular cause of recurrent heart failure. J Am Heart Assoc 2023;12:e030474. https://doi.org/10.1161/jaha.123.030474 
943. Bhalla V, Textor SC, Beckman JA, Casanegra AI, Cooper CJ, Kim ESH, et al. Revascularization for renovascular disease: a scientific statement from the American Heart Association. Hypertension 2022;79:e128–43. https://doi.org/10.1161/hyp.0000000000000217 
944. Bravo E, Fouad-Tarazi F, Rossi G, Imamura M, Lin WW, Madkour MA, et al. A reevaluation of the hemodyna-mics of pheochromocytoma. Hypertension 1990;15:I128–131. https://doi.org/10.1161/01.hyp.15.2_suppl.i128 
945. Cohen JB, Brown NJ, Brown SA, Dent S, van Dorst DCH, Herrmann SM, et al. Cancer therapy-related hypertension: a scientific statement from the American Heart Association. Hypertension 2023;80:e46–57. https://doi.org/10.1161/hyp.0000000000000224 
946. Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, et al. ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022;43:4229–361. https://doi.org/10.1093/eurheartj/ehac244 
947. Boulestreau R, van den Born BH, Lip GYH, Gupta A. Malignant hypertension: current perspectives and challenges. J Am Heart Assoc 2022;11:e023397. https://doi.org/10.1161/jaha.121.023397 
948. Ma L, Hu X, Song L, Chen X, Ouyang M, Billot L, et al. The third intensive care bundle with blood pressure reduction in acute cerebral haemorrhage trial (INTERACT3): an international, stepped wedge cluster randomised controlled trial. Lancet 2023;402:27–40. https://doi.org/10.1016/s0140-6736(23)00806-1 
949. Moullaali TJ, Wang X, Sandset EC, Woodhouse LJ, Law ZK, Arima H, et al. Early lowering of blood pressure after acute intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. J Neurol Neurosurg Psychiatry 2022;93:6–13. https://doi.org/10.1136/jnnp-2021-327195 
950. Wang X, Di Tanna GL, Moullaali TJ, Martin R’ H, Shipes VB, Robinson TG, et al. J-shape relation of blood pressure reduction and outcome in acute intracerebral hemorrhage: a pooled analysis of INTERACT2 and ATACH-II individual participant data. Int J Stroke 2022;17:1129–36. https://doi.org/10.1177/17474930211064076 
951. Qureshi AI, Huang W, Lobanova I, Barsan WG, Hanley DF, Hsu CY, et al. Outcomes of intensive systolic blood pressure reduction in patients with intracerebral hemorrhage and excessively high initial systolic blood pressure: post hoc analysis of a randomized clinical trial. JAMA Neurol 2020;77:1355–65. https://doi.org/10.1001/jamaneurol.2020.3075 
952. Bath PM, Krishnan K. Interventions for deliberately altering blood pressure in acute stroke. Cochrane Database Syst Rev 2014;2014:CD000039. https://doi.org/10.1002/14651858.CD000039.pub3 
953. Berge E, Whiteley W, Audebert H, De Marchis GM, Fonseca AC, Padiglioni C, et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J 2021;6:I–LXII. https://doi.org/10.1177/2396987321989865 

954. LeCouffe NE, Kappelhof M, Treurniet KM, Lingsma HF, Zhang G, van den Wijngaard IR, et al. 2B, 2C, or 3: what should be the angiographic target for endovascular treatment in ische-mic stroke? Stroke 2020;51:1790–6. https://doi.org/10.1161/strokeaha.119.028891 

955. Mistry EA, Hart KW, Davis LT, Gao Y, Prestigiacomo CJ, Mittal S, et al. Blood pressure management after endovascular therapy for acute ischemic stroke: the BEST-II randomized clinical trial. JAMA 2023;330:821–31. https://doi.org/10.1001/jama.2023.14330 

956. Lee M, Ovbiagele B, Hong KS, Wu Y-L, Lee J-E, Rao NM, et al. Effect of blood pressure lowering in early ischemic stroke: meta-analysis. Stroke 2015;46:1883–9. https://doi.org/10.1161/strokeaha.115.009552 

957. Anderson CS, Huang Y, Lindley RI, Chen X, Arima H, Chen G, et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet 2019;393:877–88. https://doi.org/10.1016/s0140-6736(19)30038-8 

958. Mazighi M, Richard S, Lapergue B, Sibon I, Gory B, Berge J, et al. Safety and efficacy of intensive blood pressure lowering after successful endovascular therapy in acute ischaemic stroke (BP-TARGET): a multicentre, open-label, randomised controlled trial. Lancet Neurol 2021;20:265–74. https://doi.org/10.1016/s1474-4422(20)30483-x 

959. Yang P, Song L, Zhang Y, Zhang X, Chen X, Li Y, et al. Intensive blood pressure control after endovascular thrombectomy for acute ischaemic stroke (ENCHANTED2/MT): a multicentre, open-label, blinded-endpoint, randomised controlled trial. Lancet 2022; 400:1585–96. https://doi.org/10.1016/s0140-6736(22)01882-7 

960. Sandset EC, Anderson CS, Bath PM, Christensen H, Fischer U, Gąsecki D, et al. European Stroke Organisation (ESO) guidelines on blood pressure management in acute ischaemic stroke and intracerebral haemorrhage. Eur Stroke J 2021;6:Xlviii–lxxxix. https://doi.org/10.1177/23969873211012133 

961. Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 2013;368:2355–65. https://doi.org/10.1056/NEJMoa1214609 

962. Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 2016;375:1033–43. https://doi.org/10.1056/NEJMoa1603460 

963. Moullaali TJ, Wang X, Woodhouse LJ, Law ZK, Delcourt C, Sprigg N, et al. Lowering blood pressure after acute intracerebral haemorrhage: protocol for a systematic review and meta-analysis using individual patient data from randomised controlled trials participating in the blood pressure in acute stroke collaboration (BASC). BMJ Open 2019;9:e030121. https://doi.org/10.1136/bmjopen-2019-030121 

964. American College of Obstetricians and Gynecologists. Gestational hypertension and preeclampsia: ACOG practice bulletin, number 222. Obstet Gynecol 2020;135:e237–60. https://doi.org/10.1097/aog.0000000000003891 

965. Garovic VD, Dechend R, Easterling T, Karumanchi SA, Baird SM, Magee LA, et al. Hypertension in pregnancy: diagnosis, blood pressure goals, and pharmacotherapy: a scientific statement from the American Heart Association. Hypertension 2022;79:e21–41. https://doi.org/10.1161/hyp.0000000000000208 

966. Magee LA, Nicolaides KH, von Dadelszen P. Preeclampsia. N Engl J Med 2022;386:1817–32. https://doi.org/10.1056/NEJMra2109523 

967. Altman D, Carroli G, Duley L, Farrell B, Moodley J, Neilson J, et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie trial: a randomised placebo-controlled trial. Lancet 2002;359:1877–90. https://doi.org/10.1016/s0140-6736(02)08778-0 

968. Poon LC, Magee LA, Verlohren S, Shennan A, von Dadelszen P, Sheiner E, et al. A literature review and best practice advice for second and third trimester risk stratification, monitoring, and management of pre-eclampsia: compiled by the pregnancy and non-communicable diseases committee of FIGO (the International Federation of Gynecology and Obstetrics). Int J Gynaecol Obstet 2021;154 Suppl 1:3–31. https://doi.org/10.1002/ijgo.13763 

969. Muhammad S, Usman H, Dawha YM, Yahya A, Yekeen A, Bako B. Comparison of intravenous labetalol and hydralazine for severe hypertension in pregnancy in Northeastern Nigeria: a randomized controlled trial. Pregnancy Hypertens 2022;29:1–6. https://doi.org/10.1016/j.preghy.2022.05.001 

970. Magee LA, Cham C, Waterman EJ, Ohlsson A, von Dadelszen P. Hydralazine for treatment of severe hypertension in pregnancy: meta-analysis. BMJ 2003;327:955–60. https://doi.org/10.1136/bmj.327.7421.955 

971. Wu HZ, Cheng Y, Yu D, Li J-B, Jiang Y-F, Zhu Z-N. Different dosage regimens of nifedipine, labetalol, and hydralazine for the treatment of severe hypertension during pregnancy: a network meta-analysis of randomized controlled trials. Hypertens Pregnancy 2022;41:126–38. https://doi.org/10.1080/10641955.2022.2056196 

972. Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur Heart J 2022;43:3826–924. https://doi.org/10.1093/eurheartj/ehac270 

973. Lizano-Díez I, Poteet S, Burniol-Garcia A, Cerezales M. The burden of perioperative hypertension/hypotension: a systematic review. PLoS One 2022;17:e0263737. https://doi.org/10.1371/journal.pone.0263737 

974. Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 2017;318:1346–57. https://doi.org/10.1001/jama.2017.14172 
975. Sanders RD, Hughes F, Shaw A, Thompson A, Bader A, Hoeft A, et al. Perioperative quality initiative consensus statement on preoperative blood pressure, risk and outcomes for elective surgery. Br J Anaesth 2019;122:552–62. https://doi.org/10.1016/j.bja.2019.01.018 
976. Messina A, Robba C, Calabrò L, Zambelli D, Iannuzzi F, Molinari E, et al. Association between perioperative fluid administration and postoperative outcomes: a 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. Crit Care 2021;25:43. https://doi.org/10.1186/s13054-021-03464-1 
977. Meng L, Yu W, Wang T, Zhang L, Heerdt PM, Gelb AW. Blood pressure targets in perioperative care. Hypertension 2018;72:806–17. https://doi.org/10.1161/hypertensionaha.118.11688 
978. Wanner PM, Wulff DU, Djurdjevic M, Korte W, Schni-der TW, Filipovic M. Targeting higher intraoperative blood pressures does not reduce adverse cardiovascular events following noncardiac surgery. J Am Coll Cardiol 2021;78:1753–64. https://doi.org/10.1016/j.jacc.2021.08.048 
979. Blessberger H, Lewis SR, Pritchard MW, Fawcett LJ, Domanovits H, Schlager O, et al. Perioperative beta-blockers for preventing surgery-related mortality and morbidity in adults undergoing non-cardiac surgery. Cochrane Database Syst Rev 2019;9:CD013438. https://doi.org/10.1002/14651858.CD013438 
980. McGory ML, Maggard MA, Ko CY. A meta-analysis of perioperative beta blockade: what is the actual risk reduction? Surgery 2005;138:171–9. https://doi.org/10.1016/j.surg.2005.03.022 
981. Kertai MD, Cooter M, Pollard RJ, Buhrman W, Aron-son S, Mathew JP, et al. Is compliance with surgical care improvement project cardiac (SCIP-Card-2) measures for perioperative β-blockers associated with reduced incidence of mortality and cardiovascular-related critical quality indicators after noncardiac surgery? Anesth Analg 2018;126:1829–38. https://doi.org/10.1213/ane.0000000000002577 
982. Roshanov PS, Rochwerg B, Patel A, Salehian O, Duceppe E, Belley-Côté EP, et al. Withholding versus continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers before noncardiac surgery: an analysis of the vascular events in noncardiac surgery patIents cOhort evaluatioN prospective cohort. Anesthesiology 2017;126:16–27. https://doi.org/10.1097/aln.0000000000001404 
983. Shiffermiller JF, Monson BJ, Vokoun CW, Beachy MW, Smith MP, Sullivan JN, et al. Prospective randomized evaluation of preoperative angiotensin-converting enzyme inhibition (PREOP-ACEI). J Hosp Med 2018;13:661–7. https://doi.org/10.12788/jhm.3036 
984. Hollmann C, Fernandes NL, Biccard BM. A systema-tic review of outcomes associated with withholding or continuing angiotensin-converting enzyme inhibitors and angiotensin receptor blockers before noncardiac surgery. Anesth Analg 2018;127:678–87. https://doi.org/10.1213/ane.0000000000002837 
985. Ackland GL, Patel A, Abbott TEF, Begum S, Dias P, Crane DR, et al. Discontinuation vs. continuation of renin-angiotensin system inhibition before non-cardiac surgery: the SPACE trial. Eur Heart J 2024;45:1146–55. https://doi.org/10.1093/eurheartj/ehad716 
986. McEvoy MD, Gupta R, Koepke EJ, Feldheiser A, Michard F, Levett D, et al. Perioperative quality initiative consensus statement on postoperative blood pressure, risk and outcomes for elective surgery. Br J Anaesth 2019;122:575–86. https://doi.org/10.1016/j.bja.2019.01.019 
987. Ekman I, Swedberg K, Taft C, Lindseth A, Norberg A, Brink E, et al. Person-centered care — ready for prime time. Eur J Cardiovasc Nurs 2011;10:248–51. https://doi.org/10.1016/j.ejcnurse.2011.06.008 
988. Krist AH, Tong ST, Aycock RA, Longo DR. Engaging patients in decision-making and behavior change to promote prevention. Stud Health Technol Inform 2017;240:284–302. https://doi.org/10.3233/ISU-170826 
989. Johnson RA, Huntley A, Hughes RA, Hughes RA, Cra-mer H, Turner KM, et al. Interventions to support shared decision making for hypertension: a systematic review of controlled studies. Health Expect 2018;21:1191–207. https://doi.org/10.1111/hex.12826 
990. Johnson RL, Roter D, Powe NR, Cooper LA. Patient race/ethnicity and quality of patient-physician communication during medical visits. Am J Public Health 2004;94:2084–90. https://doi.org/10.2105/ajph.94.12.2084 
991. Williams MV, Davis T, Parker RM, Weiss BD. The role of health literacy in patient-physician communication. Fam Med 2002;34:383–9. 
992. Karmali KN, Persell SD, Perel P, Lloyd-Jones DM, Berendsen MA, Huffman MD. Risk scoring for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2017;3:CD006887. https://doi.org/10.1002/14651858.CD006887.pub4 
993. Ma C, Zhou Y, Zhou W, Huang C. Evaluation of the effect of motivational interviewing counselling on hypertension care. Patient Educ Couns 2014;95:231–7. https://doi.org/10.1016/j.pec.2014.01.011 
994. Huang X, Xu N, Wang Y, Sun Y, Guo A. The effects of motivational interviewing on hypertension management: a systematic review and meta-analysis. Patient Educ Couns 2023;112:107760. https://doi.org/10.1016/j.pec.2023.107760 
995. Glaser E, Richard C, Lussier MT. The impact of a patient web communication intervention on reaching treatment suggested guidelines for chronic diseases: a randomized controlled trial. Patient Educ Couns 2017;100:2062–70. https://doi.org/10.1016/j.pec.2017.05.022 

996. Richard AA, Shea K. Delineation of self-care and associated concepts. J Nurs Scholarsh 2011;43:255–64. https://doi.org/10.1111/j.1547-5069.2011.01404.x 

997. Wilkinson A, Whitehead L. Evolution of the concept of self-care and implications for nurses: a literature review. Int J Nurs Stud 2009;46:1143–7. https://doi.org/10.1016/j.ijnurstu.2008.12.011 

998. Bodenheimer T, Lorig K, Holman H, Grumbach K. Patient self-management of chronic disease in primary care. JAMA 2002;288:2469–75. https://doi.org/10.1001/ jama.288.19.2469 

999. Barlow J, Wright C, Sheasby J, Turner A, Hainsworth J. Self-management approaches for people with chronic conditions: a review. Patient Educ Couns 2002;48:177–87. https://doi.org/10.1016/s0738-3991(02)00032-0 
1000. Hallberg I, Ranerup A, Kjellgren K. Supporting the self-management of hypertension: patients’ experiences of using a mobile phone-based system. J Hum Hypertens 2016;30:141–6. https://doi.org/10.1038/jhh.2015.37 

1001. Almeida GO, Aidar FJ, Matos DG, Almeida-Neto PF, Melo EV, Barreto Filho JAS, et al. Non-targeted self-measurement of blood pressure: association with self-medication, unscheduled emergency visits and anxiety. Medicina (Kaunas) 2021;57:75. https://doi.org/10.3390/medicina57010075 

1002. Greaves F, Joshi I, Campbell M, Roberts S, Patel N, Powell J, et al. What is an appropriate level of evidence for a digital health intervention? Lancet 2019;392:2665–7. https://doi.org/10.1016/s0140-6736(18)33129-5 

1003. Morton K, Dennison L, May C, Murray E, Little P, McManus RJ, et al. Using digital interventions for self-management of chronic physical health conditions: a meta-ethnography review of published studies. Patient Educ Couns 2017;100:616–35. https://doi.org/10.1016/j.pec.2016.10.019 

1004. McKinstry B, Hanley J, Wild S, Pagliari C, Paterson M, Lewis S, et al. Telemonitoring based service redesign for the management of uncontrolled hypertension: multicentre randomised controlled trial. BMJ 2013;346:f3030. https://doi.org/10.1136/bmj.f3030 

1005. Persell SD, Peprah YA, Lipiszko D, Lee JY, Li JJ, Ciolino JD, et al. Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: a randomized clinical trial. JAMA Netw Open 2020;3:e200255. https://doi.org/10.1001/jamanetworkopen.2020.0255 

1006. Andersson U, Nilsson PM, Kjellgren K, Hoffmann M, Wennersten A, Midlöv P, et al. PERson-centredness in Hypertension management using Information Technology: a randomized controlled trial in primary care. J Hypertens 2023;41:246–53. https://doi.org/10.1097/hjh.0000000000003322 

1007. Bergland OU, Halvorsen LV, Søraas CL, Hjørnholm U, Kjær VN, Rognstad S, et al. Detection of nonadherence to antihypertensive treatment by measurements of serum drug concentrations. Hypertension 2021;78:617–28. https://doi.org/10.1161/ hypertensionaha.121.17514 

1008. Durand H, Hayes P, Morrissey EC, Newell J, Casey M, Murphy AW, et al. Medication adherence among patients with apparent treatment-resistant hypertension: systematic review and meta-analysis. J Hypertens 2017;35:2346–57. https://doi.org/10.1097/hjh.0000000000001502

1009. Kronish IM, Thorpe CT, Voils CI. Measuring the multiple domains of medication nonadherence: findings from a Delphi survey of adherence experts. Transl Behav Med 2021;11:104–13. https://doi.org/10.1093/tbm/ibz133

1010. DiMatteo MR. Social support and patient adhe-
rence to medical treatment: a meta-analysis. Health Psychol 2004;23:207–18. https://doi.org/10.1037/0278-6133.23.2.207

1011. Houle SK, Chatterley T, Tsuyuki RT. Multidisciplinary approaches to the management of high blood pressure. Curr Opin Cardiol 2014;29:344–53. https://doi.org/10.1097/hco.0000000000000071

1012. Woodham NS, Taneepanichskul S, Somrongthong R, Kitsanapun A, Sompakdee B. Effectiveness of a multidisciplinary approach intervention to improve blood pressure control among elderly hypertensive patients in rural Thailand: a quasi-experimental study. J Multidiscip Healthc 2020;13:571–80. https://doi.org/10.2147/jmdh.S254286 
1013. Mattei da Silva ÂT, de Fátima Mantovani M, Castanho Moreira R, Perez Arthur J, Molina de Souza R. Nursing case management for people with hypertension in primary health care: a randomized controlled trial. Res Nurs Health 2020;43:68–78. https://doi.org/10.1002/nur.21994 
1014. He J, Ouyang N, Guo X, Sun G, Li Z, Mu J, et al. Effectiveness of a non-physician community health-care provider-led intensive blood pressure intervention versus usual care on cardiovascular disease (CRHCP): an open-label, blinded-endpoint, cluster-randomised trial. Lancet 2023;401:928–38. https://doi.org/10.1016/s0140-6736(22)02603-4 
1015. Creegan D, McEvoy JW. Selected highlights in the updated treatment of hypertension. Trends Cardiovasc Med. https://doi.org/10.1016/j.tcm.2023.11.001 
1016. Jaffe MG, Lee GA, Young JD, Sidney S, Go AS. Improved blood pressure control associated with a large-scale hypertension program. JAMA 2013;310:699–705. https://doi.org/10.1001/jama.2013.108769 
1017. Hänsel M, Steigmiller K, Luft AR, Gebhard C, Held U, Wegener S, et al. Neurovascular disease in Switzerland: 10-year trends show non-traditional risk factors on the rise and higher exposure in women. Eur J Neurol 2022;29:2851–60. https://doi.org/10.1111/ene.15434 
1018. de Ruiter SC, Schmidt AF, Grobbee DE, den Ruijter HM, Peters SAE. Sex-specific Mendelian randomisation to assess the causality of sex differences in the effects of risk factors and treatment: spotlight on hypertension. J Hum Hypertens 2023;37:602–8. https://doi.org/10.1038/s41371-023-00821-1 
1019. Chapman N, Ching SM, Konradi AO, Nuyt AM, Khan T, Twumasi-Ankrah B, et al. Arterial hypertension in women: state of the art and knowledge gaps. Hypertension 2023;80:1140–9. https://doi.org/10.1161/hypertensionaha.122.20448 
1020. Tamargo J, Caballero R, Mosquera ED. Sex and gender differences in the treatment of arterial hypertension. Expert Rev Clin Pharmacol 2023;16:329–47. https://doi.org/10.1080/17512433.2023.2189585 
1021. Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet 2016;388:2665–712. https://doi.org/10.1016/s0140-6736(16)31134-5

Вернуться к номеру