Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Международный неврологический журнал Том 19, №7, 2023

Вернуться к номеру

Роль автоімунних процесів при демієлінізуючих захворюваннях нервової системи: фокус на розсіяний склероз

Авторы: Гладких Ф.В.
Харківський національний університет імені В.Н. Каразіна Міністерства освіти і науки України, м. Харків, Україна
Державна установа «Інститут медичної радіології та онкології ім. С.П. Григор’єва Національної академії медичних наук України», м. Харків, Україна
Інститут проблем кріобіології і кріомедицини Національної академії наук України, м. Харків, Україна

Рубрики: Неврология

Разделы: Клинические исследования

Версия для печати


Резюме

Актуальність. Демієлінізуючі захворювання центральної нервової системи (ЦНС) — це гетерогенна група розладів, які характеризуються пошкодженням мієлінової оболонки аксонів нервових клітин. Розсіяний склероз (РС) є найпоширенішим хронічним запальним демієлінізуючим захворюванням ЦНС, на яке страждають понад 2,9 мільйона людей у всьому світі. Мета: узагальнити сучасні відомості про особливості імунопатогенезу розсіяного склерозу за даними відкритих джерел інформації. Методи. Підбір публікацій, у яких висвітлювались відомості про особливості імунопатогенезу розсіяного склерозу, виконано у базах даних PubMed, Clinical Key Elsevier, Cochrane Library, eBook Business Collection та Google Scholar за ключовими словами: розсіяний склероз, демієлінізуючі захворювання, нейродегенерація, олігодендроцити. Результати. У перебігу РС виділяють три послідовні фази/форми, відомі як рецидивно-ремітуюча, первинно прогресуюча та вторинно прогресуюча. Аномалії імунних механізмів запропоновані як протагоністи патогенезу РС. Автореактивні мієліноспецифічні лімфоцити активуються поза ЦНС, перетинають гематоенцефалічний бар’єр і утворюють нові запальні демієлінізуючі ураження. Мієлінізуючий олігодендроцит є мішенню під час адаптивної імунної відповіді при РС. Запальна реакція в головному мозку пацієнтів з прогресуючим РС спостерігається в основному у великих сполучнотканинних просторах мозкових оболонок і перивентрикулярному просторі. Лікування РС можна розділити на три категорії: лікування гострого рецидиву, лікування, що модифікує захворювання, та симптоматичні методи лікування. Висновки. З боку Т-клітин як допоміжні (CD4+), так і цитотоксичні (CD8+) Т-клітини беруть участь в ураженні ЦНС при РС. Периферично активовані підгрупи Т-клітин (CD4+ Th1 та Th17, CD8+) мігрують через гематоенцефалічний бар’єр та активують В-клітини і макрофаги, що обумовлює нейрозапальну реакцію та викликає демієлінізацію і нейродегенерацію у ЦНС. Клітини-попередники олігодендроцитів, які значно поширені по всій ЦНС, опосередковують мієлінізацію та ремієлінізацію. Однією з бажаних особливостей нових методів лікування РС виступає відновлення антигенспецифічної толерантності.

Background. Demyelinating diseases of the central nervous system (CNS) are a heterogeneous group of disorders characterized by a damage to the myelin sheath of nerve cell axons. Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the CNS affecting more than 2.9 million people worldwide. The purpose was to summarize current information about the features of the immunopathogenesis of multiple sclerosis according to the data from open sources of information. Materials and methods. The selection of publications covering the features of the immunopathogenesis of multiple sclerosis was carried out in the PubMed, Clinical Key Elsevier, Cochrane Library, eBook Business Collection and Google Scholar databases using the following keywords: multiple sclerosis, demyelinating diseases, neurodegeneration, oligodendrocytes. Results. The course of MS has three successive phases/forms known as relapsing-remitting, primary progressive and secondary progressive. Abnormalities of immune mechanisms are proposed as protagonists of the pathogenesis of MS. Autoreactive myelin-specific lymphocytes are activated outside the CNS, they cross the blood-brain barrier and form new inflammatory demyelinating lesions. The myelinating oligodendrocyte is a target during the adaptive immune response in MS. The inflammatory reaction in the brain of patients with progressive MS is observed mainly in the large connective tissues of the meninges and the periventricular space. Treatment of MS can be divided into three categories: treatment of acute relapse, disease-modifying treatment, and symptomatic treatment. Conclusions. On the T cell side, both hel-per (CD4+) and cytotoxic (CD8+) T cells are involved in the CNS damage in MS. Peripherally activated subsets of T cells (CD4+ Th1 and Th17, CD8+) migrate through the blood-brain barrier and activate B-cells and macrophages, which causes a neuroinflammatory reaction and leads to demyelination and neurodegeneration in the CNS. Oligodendrocyte progenitor cells, which are widely distributed throughout the CNS, mediate myelination and remyelination. One of the desired features of new methods for treating MS is the restoration of antigen-specific tolerance.


Ключевые слова

автоімунна патологія; демієлінізуючі захворювання; розсіяний склероз; нейродегенерація; олігодендроцити; безклітинні біологічні засоби

autoimmune pathology; demyelinating diseases; multiple sclerosis; neurodegeneration; oligodendrocytes; cell-free biological agents


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Coutinho Costa V.G., Araújo S.E., Alves-Leon S.V., Gomes F.C.A. Central nervous system demyelinating diseases: glial cells at the hub of pathology. Front. Immunol. 2023. 14. 1135540. https://doi.org/10.3389/fimmu.2023.1135540. 
2. Barkhof F., Koeller K.K. Demyelinating Diseases of the CNS (Brain and Spine). 2020. In: Hodler J., Kubik-Huch R.A., von Schulthess G.K., editors. Diseases of the Brain, Head and Neck, Spine 2020–2023; Diagnostic Imaging. Cham (CH): Springer, 2020. Chapter 13. PMID: 32119239.
3. Cañellas A.R., Gols A.R., Izquierdo J.R., Subirana M.T., Gairin X.M. Idiopathic inflammatory-demyelinating diseases of the central nervous system. Neuroradiology. 2007. 49(5). 393-409. doi: https://doi.org/10.1007/s00234-007-0216-2. 
4. Ismail I.I., Salama S. Association of CNS demyelination and COVID-19 infection: an updated systematic review. J. Neurol. 2022. 269(2). 541-576. https://doi.org/10.1007/s00415-021-10752-x. 
5. Ismail I.I., Salama S. A systematic review of cases of CNS demyelination following COVID-19 vaccination. J. Neuroimmunol. 2022. 362. 577765. https://doi.org/10.1016/j.jneuroim.2021.577765.
6. Hill R.A., Li A.M., Grutzendler J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 2018. 21(5). 683-695. https://doi.org/10.1038/s41593-018-0120-6.
7. Balestri S., Del Giovane A., Sposato C., Ferrarelli M., Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int. J. Mol. Sci. 2021. 22(6). 2891. https://doi.org/10.3390/ijms22062891.
8. Walton C., King R., Rechtman L., Kaye W., Leray E., Marrie R.A., et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020 Dec. 26(14). 1816-1821; https://doi.org/10.1177/1352458520970841. Epub 2020 Nov 11. PMID: 33174475; PMCID: PMC7720355.
9. Lubetzki C., Zalc B., Williams A., Stadelmann C., Stankoff B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 2020. 19(8). 678-688. https://doi.org/10.1016/S1474-4422(20)30140-X. 
10. Höftberger R., Lassmann H. Inflammatory demyelinating di-seases of the central nervous system. Handb. Clin. Neurol. 2017. 145. 263-283. https://doi.org/10.1016/B978-0-12-802395-2.00019-5.
11. Charcot J.M. Histologie de le sclerose en plaques. Gazette Hopitaux. 1868. 41 (557–558). 566.
12. Amin M., Hersh C.M. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener Dis. Manag. 2023. 13(1). 47-70. https://doi.org/10.2217/nmt-2021-0058.
13. Miclea A., Bagnoud M., Chan A., Hoepner R. A Brief Review of the Effects of Vitamin D on Multiple Sclerosis. Front. Immunol. 2020. 11. 781. https://doi.org/10.3389/fimmu.2020.00781. 
14. Simpson S. Jr, Wang W., Otahal P., Blizzard L., van der Mei I.A.F., Taylor B.V. Latitude continues to be significantly associa-ted with the prevalence of multiple sclerosis: an updated meta-analysis. J. Neurol. Neurosurg. Psychiatry. 2019. 90(11). 1193-1200. https://doi.org/10.1136/jnnp-2018-320189. 
15. Vitkova M., Diouf I., Malpas C., Horakova D., Kubala Havrdova E., Patti F., et al. Association of Latitude and Exposure to Ultraviolet B Radiation with Severity of Multiple Sclerosis: An International Registry Study. Neurology. 2022. 98(24). e2401-e2412. https://doi.org/10.1212/WNL.0000000000200545.
16. Mey G.M., Mahajan K.R., DeSilva T.M. Neurodegeneration in multiple sclerosis. WIREs Mech. Dis. 2023. 15(1). e1583. https://doi.org/10.1002/wsbm.1583. 
17. Fox R.J., Cohen J.A. Multiple sclerosis: the importance of early recognition and treatment. Cleve Clin. J. Med. 2001. 68(2). 157-71. https://doi.org/10.3949/ccjm.68.2.157. 
18. Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clin. Med. (Lond.). 2020. 20(4). 380-383. https://doi.org/10.7861/clinmed.2020-0292.
19. Liu R., Du S., Zhao L., Jain S., Sahay K., Rizvanov A., et al. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front. Immunol. 2022. 13. 996469. https://doi.org/10.3389/fimmu.2022.996469. 
20. Frazzei G., van Vollenhoven R.F., de Jong B.A., Siegelaar S.E., van Schaardenburg D. Preclinical Autoimmune Disease: a Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Front. Immunol. 2022. 13. 899372. https://doi.org/10.3389/fimmu.2022.899372.
21. Hagan K.A., Munger K.L., Ascherio A., Grodstein F. Epidemiology of Major Neurodegenerative Diseases in Women: Contribution of the Nurses’ Health Study. Am. J. Public Health. 2016. 106(9). 1650-5. https://doi.org/10.2105/AJPH.2016.303324. 
22. Bjornevik K., Cortese M., Healy B.C., Kuhle J., Mina M.J., Leng Y., et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022. 375(6578). 296-301. https://doi.org/10.1126/science.abj8222.
23. Tettey P., Simpson S. Jr, Taylor B.V., van der Mei I.A. The co-occurrence of multiple sclerosis and type 1 diabetes: shared aetiologic features and clinical implication for MS aetiology. J. Neurol. Sci. 2015. 348(1-2). 126-31. https://doi.org/10.1016/j.jns.2014.11.019. 
24. Thompson A.J., Baranzini S.E., Geurts J., Hemmer B., Ciccarelli O. Multiple sclerosis. Lancet. 2018. 391(10130). 1622-1636. https://doi.org/10.1016/S0140-6736(18)30481-1.
25. Schreiner T.G., Genes T.M. Obesity and Multiple Sclerosis — A Multifaceted Association. J. Clin. Med. 2021. 10(12). 2689. https://doi.org/10.3390/jcm10122689. 
26. Alfredsson L., Olsson T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2019. 9(4). a028944. https://doi.org/10.1101/cshperspect.a028944.
27. Verma N.D., Lam A.D., Chiu C., Tran G.T., Hall B.M., Hodgkinson S.J. Multiple sclerosis patients have reduced resting and increased activated CD4+CD25+FOXP3+T regulatory cells. Sci. Rep. 2021. 11(1). 10476. https://doi.org/10.1038/s41598-021-88448-5. 
28. Rodi M., Dimisianos N., de Lastic A.L., Sakellaraki P., Deraos G., Matsoukas J., et al. Regulatory Cell Populations in Relap-sing-Remitting Multiple Sclerosis (RRMS) Patients: Effect of Disease Activity and Treatment Regimens. Int. J. Mol. Sci. 2016. 17(9). 1398. https://doi.org/10.3390/ijms17091398.
29. Ramaglia V., Sheikh-Mohamed S., Legg K., Park C., Rojas O.L., Zandee S., et al. Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry. Elife. 2019. 8. e48051. https://doi.org/10.7554/eLife.48051. 
30. Ahmed S.M., Fransen N.L., Touil H., Michailidou I., Hui-tinga I., Gommerman J.L., et al. Accumulation of meningeal lymphocytes correlates with white matter lesion activity in progressive multiple sclerosis. JCI Insight. 2022. 7(5). e151683. https://doi.org/10.1172/jci.insight.151683.
31. Martinsen V., Kursula P. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids. 2022. 54(1). 99-109. https://doi.org/10.1007/s00726-021-03111-7. 
32. Ciccarelli O., Barkhof F., Bodini B., De Stefano N., Golay X., Nicolay K., et al. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol. 2014. 13(8). 807-22. https://doi.org/10.1016/S1474-4422(14)70101-2.
33. Takeshita Y., Ransohoff R.M. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro mo-dels. Immunol. Rev. 2012. 248(1). 228-39. https://doi.org/10.1111/j.1600-065X.2012.01127.x. 
34. Van Kaer L., Postoak J.L., Wang C., Yang G., Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol. Immunol. 2019. 16(6). 531-539. https://doi.org/10.1038/s41423-019-0221-5. 
35. Denic A., Wootla B., Rodriguez M. CD8(+) T cells in multiple sclerosis. Expert Opin. Ther. Targets. 2013. 17(9). 1053-66. https://doi.org/10.1517/14728222.2013.815726.
36. Galli E., Hartmann F.J., Schreiner B., Ingelfinger F., Arvaniti E., Diebold M., et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat. Med. 2019. 25(8). 1290-1300. https://doi.org/10.1038/s41591-019-0521-4 .
37. Chitnis T. The role of CD4 T cells in the pathogenesis of multiple sclerosis. Int. Rev. Neurobiol. 2007. 79. 43-72. https://doi.org/10.1016/S0074-7742(07)79003-7. 
38. Wang J., Jelcic I., Mühlenbruch L., Haunerdinger V., Toussaint N.C., Zhao Y., et al. HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell. 2020. 183(5). 1264-1281.e20. https://doi.org/10.1016/j.cell.2020.09.054. 
39. Ghalamfarsa G., Hojjat-Farsangi M., Mohammadnia-Afrouzi M., Anvari E., Farhadi S., Yousefi M., Jadidi-Niaragh F. Application of nanomedicine for crossing the blood-brain barrier: Theranostic opportunities in multiple sclerosis. J. Immunotoxicol. 2016. 13(5). 603-19. https://doi.org/10.3109/1547691X.2016.1159264.
40. Elyaman W., Khoury S.J. Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin. Immunopathol. 2017. 39(1). 79-87. https://doi.org/10.1007/s00281-016-0604-y. 
41. Baharlou R., Khezri A., Razmkhah M., Habibagahi M., Hosseini A., Ghaderi A., Jaberipour M. Increased interleukin-17 transcripts in peripheral blood mononuclear cells, a link between T-helper 17 and proinflammatory responses in bladder cancer. Iran Red. Crescent Med. J. 2015. 17(2). e9244. https://doi.org/10.5812/ircmj.9244.
42. Larochelle C., Wasser B., Jamann H., Löffel J.T., Cui Q.L., Tastet O., et al. Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc. Natl. Acad. Sci. U S A. 2021. 118(34). e2025813118. https://doi.org/10.1073/pnas.2025813118. 
43. Schwab N., Schneider-Hohendorf T., Wiendl H. Therapeutic uses of anti-α4-integrin (anti-VLA-4) antibodies in multiple sclerosis. Int. Immunol. 2015. 27(1). 47-53. https://doi.org/10.1093/intimm/dxu096.
44. Kinzel S., Weber M.S. B Cell-Directed Therapeutics in Multiple Sclerosis: Rationale and Clinical Evidence. CNS Drugs. 2016. 30(12). 1137-1148. https://doi.org/10.1007/s40263-016-0396-6.
45. Batoulis H., Wunsch M., Birkenheier J., Rottlaender A., Gorboulev V., Kuerten S. Central nervous system infiltrates are characterized by features of ongoing B cell-related immune activity in MP4-induced experimental autoimmune encephalomyelitis. Clin. Immunol. 2015. 158(1). 47-58. https://doi.org/10.1016/j.clim.2015.03.009.
46. Wagner C.A., Roqué P.J., Goverman J.M. Pathogenic T cell cytokines in multiple sclerosis. J. Exp. Med. 2020. 217(1). e20190460. https://doi.org/10.1084/jem.20190460. 
47. Kunkl M., Frascolla S., Amormino C., Volpe E., Tuosto L. T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells. 2020. 9(2). 482. https://doi.org/10.3390/cells9020482.
48. Kisuya J., Chemtai A., Raballah E., Keter A., Ouma C. The diagnostic accuracy of Th1 (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4, IL-6 and IL-10) cytokines response in AFB microscopy smear negative PTB-HIV co-infected patients. Sci. Rep. 2019. 9(1). 2966. https://doi.org/10.1038/s41598-019-39048-x. 
49. Frade-Barros A.F., Ianni B.M., Cabantous S., Pissetti C.W., Saba B., Lin-Wang H.T., et al. Polymorphisms in Genes Affecting Interferon-γ Production and Th1 T Cell Differentiation Are Associated with Progression to Chagas Disease Cardiomyopathy. Front. Immunol. 2020. 11. 1386. https://doi.org/10.3389/fimmu.2020.01386.
50. Magliozzi R., Howell O.W., Nicholas R., Cruciani C., Castellaro M., Romualdi C., et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 2018. 83(4). 739-755. https://doi.org/10.1002/ana.25197. 
51. Wu X., Tian J., Wang S. Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Front. Immunol. 2018. 9. 1112. https://doi.org/10.3389/fimmu.2018.01112.
52. Filippi M., Bar-Or A., Piehl F., Preziosa P., Solari A., Vukusic S., Rocca M.A. Multiple sclerosis. Nat. Rev. Dis. Primers. 2018. 4(1). 43. https://doi.org/10.1038/s41572-018-0041-4. 
53. Lassmann H. Pathogenic Mechanisms Associated with Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019. 9. 3116. https://doi.org/10.3389/fimmu.2018.03116. 
54. Cunniffe N., Coles A. Promoting remyelination in multiple sclerosis. J. Neurol. 2021. 268(1). 30-44. https://doi.org/10.1007/s00415-019-09421-x. 
55. Fünfschilling U., Supplie L.M., Mahad D., Boretius S., Saab A.S., Edgar J., et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012. 485(7399). 517-21. https://doi.org/10.1038/nature11007.
56. Butler C.A., Popescu A.S., Kitchener E.J.A., Allendorf D.H., Puigdellívol M., Brown G.C. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. 2021. 158(3). 621-639. https://doi.org/10.1111/jnc.15327. 
57. Yang Y., Wang J.Z. Nature of Tau-Associated Neurodegeneration and the Molecular Mechanisms. J. Alzheimers Dis. 2018. 62(3). 1305-1317. https://doi.org/10.3233/JAD-170788.
58. Galloway D., Phillips A., Owen D., Moore C. Phagocytosis in the brain: Homeostasis and disease. Frontiers in Immunology. 2019. 10. 790. https://doi.org/10.3389/fimmu.2019.00790.
59. Brown G., Vilalta A. How microglia kill neurons. Brain Research. 2015. 1628. 288-297. https://doi.org/10.1016/j.brainres.2015.08.031.
60. Guerrero B.L., Sicotte N.L. Microglia in Multiple Sclerosis: Friend or Foe? Front. Immunol. 2020. 11. 374. https://doi.org/10.3389/fimmu.2020.00374. 
61. Fischer M.T., Sharma R., Lim J.L., Haider L., Frischer J.M., Drexhage J., et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain. 2012. 135(Pt. 3). 886-99. https://doi.org/10.1093/brain/aws012.
62. Lassmann H. Multiple Sclerosis Pathology. Cold Spring Harb. Perspect. Med. 2018. 8(3). a028936. https://doi.org/10.1101/cshperspect.a028936. 
63. Storch M.K., Bauer J., Linington C., Olsson T., Weissert R., Lassmann H. Cortical demyelination can be modeled in specific rat models of autoimmune encephalomyelitis and is major histocompatibi-lity complex (MHC) haplotype-related. J. Neuropathol. Exp. Neurol. 2006. 65(12). 1137-42. https://doi.org/10.1097/01.jnen.0000248547. 
64. Fischer M.T., Wimmer I., Höftberger R., Gerlach S., Hai-der L., Zrzavy T., et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain. 2013. 136(Pt 6). 1799-815. https://doi.org/10.1093/brain/awt110. 
65. Campbell G.R., Ziabreva I., Reeve A.K., Krishnan K.J., Reynolds R., Howell O., et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann. Neurol. 2011. 69(3). 481-92. https://doi.org/10.1002/ana.22109. 
66. Mahad D.H., Trapp B.D., Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015. 14(2). 183-93. https://doi.org/10.1016/S1474-4422(14)70256-X. 
67. Stys P.K., Zamponi G.W., van Minnen J., Geurts J.J. Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 2012. 13(7). 507-14. https://doi.org/10.1038/nrn3275. 
68. Doshi A., Chataway J. Multiple sclerosis, a treatable di-sease. Clin. Med. (Lond.). 2016. 16(Suppl. 6). s53-s59. https://doi.org/10.7861/clinmedicine.16-6-s53. 
69. Scolding N., Barnes D., Cader S., Chataway J., Chaudhuri A., Coles A., et al. Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Pract. Neurol. 2015. 15(4). 273-9. https://doi.org/10.1136/practneurol-2015-001139.
70. Freeman L., Longbrake E.E., Coyle P.K., Hendin B., Vollmer T. High-Efficacy Therapies for Treatment-Naïve Individuals with Relapsing-Remitting Multiple Sclerosis. CNS Drugs. 2022. 36(12). 1285-1299. https://doi.org/10.1007/s40263-022-00965-7. 
71. Charabati M., Wheeler M.A., Weiner H.L., Quintana F.J. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell. 2023. 186(7). 1309-1327. https://doi.org/10.1016/j.cell.2023.03.008.
72. Yi J., Miller A.T., Archambault A.S., Jones A.J., Bradstreet T.R., Bandla S., et al. Antigen-specific depletion of CD4+ T cells by CAR T cells reveals distinct roles of higher- and lower-affinity TCRs during autoimmunity. Sci. Immunol. 2022. 7(76). eabo0777. https://doi.org/10.1126/sciimmunol.abo0777. 
73. Namini M.S., Daneshimehr F., Beheshtizadeh N., Mansouri V., Ai J., Jahromi H.K., Ebrahimi-Barough S. Cell-free therapy based on extracellular vesicles: a promising therapeutic strategy for peripheral nerve injury. Stem Cell Res. Ther. 2023. 14(1). 254. https://doi.org/10.1186/s13287-023-03467-5. 
74. Kidd G.J., Ohno N., Trapp B.D. Biology of Schwann cells. Handb. Clin. Neurol. 2013. 115. 55-79. https://doi.org/10.1016/B978-0-444-52902-2.00005-9. 
75. Yi S., Yuan Y., Chen Q., Wang X., Gong L., Liu J., et al. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Sci. Rep. 2016. 6. 29121. https://doi.org/10.1038/srep29121. 
76. López-Leal R., Díaz-Viraqué F., Catalán R.J., Saquel C., Enright A., Iraola G., Court F.A. Schwann cell reprogramming into repair cells increases miRNA-21 expression in exosomes promoting axonal growth. J. Cell Sci. 2020. 133(12). jcs239004. https://doi.org/10.1242/jcs.239004. 
77. De Gregorio C., Díaz P., López-Leal R., Manque P., Court F.A. Purification of Exosomes from Primary Schwann Cells, RNA Extraction, and Next-Generation Sequencing of Exosomal RNAs. Methods Mol. Biol. 2018. 1739. 299-315. https://doi.org/10.1007/978-1-4939-7649-2_19.
78. Hauser S.L., Cree B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020. 133(12). 1380-1390.e2. https://doi.org/10.1016/j.amjmed.2020.05.049. 
79. Sedel F., Papeix C., Bellanger A., Touitou V., Lebrun-Frenay C., Galanaud D., et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult. Scler. Relat. Disord. 2015 Mar. 4(2). 159-69. https://doi.org/10.1016/j.msard.2015.01.005.

Вернуться к номеру