Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «Практическая онкология» Том 7, №1, 2024

Вернуться к номеру

Молекулярні біомаркери в менеджменті пацієнтів з недрібноклітинним раком легень

Авторы: Сулаєва О. (1, 2), Потоцька О. (3), Козаков Д. (1), Лівшун С. (1), Панько М. (1), Винниченко О. (4), Москаленко Ю. (5), Москаленко Р. (5)
(1) - Медична лабораторія CSD LAB, м. Київ, Україна
(2) - Національний медичний університет імені О.О. Богомольця, м. Київ, Україна
(3) - Університет Калгарі, Медична школа Каммінга, м. Калгарі, Альберта, Канада
(4) - Сумський обласний клінічний онкологічний центр, м. Суми, Україна
(5) - Медичний інститут Сумського державного університету, м. Суми, Україна

Рубрики: Онкология

Разделы: Справочник специалиста

Версия для печати


Резюме

Недрібноклітинний рак легень (НДКРЛ) є одною з провідних причин смертності в онкології. Упровадження в клінічну практику таргетної терапії та імунотерапії дозволило досягти суттєвого прогресу в поліпшенні результатів лікування хворих на НДКРЛ. Вибір стратегії лікування ґрунтується на результатах мультигенного тестування НДКРЛ з оцінкою відповідного спектра клінічно значущих біомаркерів. У цьому огляді автори систематизували дані щодо молекулярного профілю НДКРЛ різних гістологічних типів і впливу генетичних альтерацій на чутливість до різних варіантів терапії, навели аналіз поточних настанов і рекомендацій щодо молекулярного тестування пацієнтів з НДКРЛ, сформулювали вимоги щодо вибору оптимальних зразків біоматеріалу і методів тестування НДКРЛ. З огляду на широкий спектр клінічно значущих мутацій при НДКРЛ оптимальним методом генетичного тестування є NGS. При неможливості проведення NGS частина клінічно значущих генетичних альтерацій може бути визначена за допомогою полімеразної ланцюгової реакції, FISH або імуногістохімії. У разі неможливості отримання зразку пухлинної тканини мультигенне тестування НДКРЛ ІІІ–ІV стадії рекомендовано проводити методом рідкої біопсії з використанням плазми крові, яка містить циркулюючу пухлинну ДНК. Дослідження циркулюючої пухлинної ДНК у крові дозволяє визначити мінімальну залишкову хворобу, визначити ефективність проведеної терапії, оцінити ризик рецидиву і прогноз.

Due to a high mortality rate, non-small cell lung cancer (NSCLC) has been in focus of continuous research worldwide. Implementing targeted therapy and immunotherapy into clinical practice become a breakthrough in fighting this malignancy, and the list of anti-cancer agents is growing. The development of therapeutic strategies requires the corresponding multigene molecular testing for defining actionable genetic alterations. In this review, the authors summarize the latest data on NSCLC molecular profiling with respect to a histological type of NSCLC, key genetic alterations and their impact on patients’ management, requirements to biological material and methods applied for genetic testing. Considering the wide range of clinically relevant genetic alterations in NSCLC, the best method of molecular diagnosis is next-generation sequencing, based both on DNA and RNA sequencing. When next-generation sequencing is not available, some driver mutations can be detected by polymerase chain reaction, fluorescence in situ hybridization, or immunohistochemistry. If a tumor tissue sample can’t be obtained, multigene testing for NSCLC stage III–IV can be performed using liquid biopsy tools, which uses blood plasma containing circulating tumor DNA. Discovering molecular profile before treatment is essential for predicting tumor sensitivity or resistance to targeted therapy and monitoring the disease course. Assessing circulating tumor DNA in blood enables detecting minimal residual disease before clinical symptoms, evaluating the efficiency of the therapy, assessing the risk of relapse and patient’s prognosis.


Ключевые слова

недрібноклітинний рак легень; драйверні мутації; таргетна терапія; імунотерапія; NGS; полімеразна ланцюгова реакція; FISH

non-small cell lung cancer; driver mutations; targeted therapy; immunotherapy; next-generation sequencing; polymerase chain reaction; fluorescence in situ hybridization


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2020;71(3):209-249. 
2. Cancer statistics. Cancer statistics. May 23; 2023. https://www.cancer.gov/about-cancer/understanding/statistics. 
3. Fedorenko Z, Michailovich Yu, Goulak L. Cancer in Ukraine, 2021–2022. Incidence, mortality, prevalence and other relevant statistics. Bulletin of the National Cancer Registry of Ukraine. 2023;24. http://www.ncru.inf.ua/publications/B.
4. Suster DI, Mino-Kenudson M. Molecular Pathology of Primary Non-small Cell Lung Cancer. Arch Med Res. 2020;51(8):784-798. 
5. Rodak O, Peris-Díaz MD, Olbromski M, Podhorska-Okołów M, Dzięgiel P. Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers (Basel). 2021;13(18):4705. 
6. National Cancer Institute (NIH), Surveillance, Epidemiology, and End Results Program (SEER) Cancer stat facts: lung and bronchus cancer, statistics at a glance. NIH SEER Web site. https://seer.cancer.gov/statfacts/html/lungb.html. 
7. Genova C. The Long Run towards Personalized Therapy in Non-Small-Cell Lung Cancer: Current State and Future Directions. Int J Mol Sci. 2023;24(9):8212. 
8. Restrepo JC, Dueñas D, Corredor Z, Liscano Y. Advances in Genomic Data and Biomarkers: Revolutionizing NSCLC Diagnosis and Treatment. Cancers (Basel). 2023;15(13):3474. 
9. Lindeman NI, Cagle PT, Aisner DL, et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the CAP, IACLC and AMP. J Mol Diagn. 2018;20(2):129-159. 
10. The World Health Organisation Classification of Thoracic Tumours 5th ed. WHO Classification of Tumours Editorial Board. Vol. 5. Lyon: IARC Press, 2021.
11. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines). Non-small cell lung cancer, version 4.2023. https://www.nccn.org/. 
12. Remon J, Soria J-C and Peters S, on behalf of the ESMO Guidelines Committee. Early and locally advanced non-small cell lung cancer: An update of the ESMO Clinical Practice Guideline focusing on diagnosis, staging, systemic and local therapy. Ann Oncol. 2021;32(12):1637-1642.
13. Hendriks LE, Kerr KM, Menis J, et al. Oncogene-addic–ted metastatic non-small cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023;34(4):339-357.
14. Hendriks LE, Kerr KM, Menis J, Mok TS, et al. Non-oncogene-addicted metastatic non-small cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023;34(4):358-376.
15. Šutić M, Vukić A, Baranašić J, Försti A, Džubur F, Samaržija M et al. Diagnostic, Predictive, and Prognostic Biomarkers in Non-Small Cell Lung Cancer (NSCLC) Management. J Pers Med. 2021;11(11):1102. 
16. Sulaieva O, Falalyeyeva T, Kobyliak N, Pellicano R, Dudin O. Precision oncology: ethical challenges and justification. Minerva Med. 2022 Aug;113(4):603-605. doi: 10.23736/S0026-4806.22.08063-6. 
17. Chalela R, Curull V, Enríquez C, Pijuan L, Bellosillo B, Gea J. Lung adenocarcinoma: from molecular basis to genome-guided therapy and immunotherapy. J Thorac Dis. 2017;9(7):2142-2158. 
18. Xu JY, Zhang C, Wang X. Integrative Proteomic Characterization of Human Lung Adenocarcinoma. Cell. 2020;182(1):245-261.e17. 
19. Kerr KM, Bibeau F, Thunnissen E, Botling J, Ryška A, Wolf J, et al. The evolving landscape of biomarker testing for non-small cell lung cancer in Europe. Lung Cancer. 2021;154:161-175. 
20. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2018;48(6):607-16. 
21. Ortega MA, Pekarek L, Navarro F, Fraile-Martínez O, García-Montero C, Álvarez-Mon MÁ, et al. Updated Views in Targeted Therapy in the Patient with Non-Small Cell Lung Cancer. J Pers Med. 2023;13(2):167. 
22. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543-50. 
23. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519-25. 
24. Morgensztern D, Devarakonda S, Govindan R. Genomic landscape of squamous cell carcinoma of the lung. Am Soc Clin Oncol Educ Book. 2013;33(1):348-353. 
25. Hamouz M, Hammouz RY, Bajwa MA, Alsayed AW, Orzechowska M, Bednarek AK. Functional Genomics Review of Non-Small-Cell Lung Cancer in Never Smokers. Int J Mol Sci. 2023;24(17):13314. 
26. Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Cha–racterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel). 2018;10(8):248. 
27. Padda SK, Harvey RD. Navigating the Landscape of Molecular Testing and Targeted Treatment of Non-Small Cell Lung Cancer. J Adv Pract Oncol. 2016;7(3):299-301. 
28. Arbour KC, Riely GJ. Systemic Therapy for Locally Advanced and Metastatic Non-Small Cell Lung Cancer: A Review. JAMA. 2019;322(8):764-774. 
29. Jeong Y, Hoang NT, Lovejoy A, Stehr H, Newman AM, Gentles AJ, et al. Role of KEAP1/NRF2 and TP53 Mutations in Lung Squamous Cell Carcinoma Development and Radiation Resistance. Cancer Discov. 2017;7(1):86-101. 
30. Niu Z, Jin R, Zhang Y, Li H. Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther. 2022;7(1):353.
31. Vassella E, Langsch S, Dettmer MS, Schlup C, Neuenschwander M, Frattini M, Gugger M, Schäfer SC. Molecular profiling of lung adenosquamous carcinoma: hybrid or genuine type? Oncotarget. 2015;6(27):23905-16. 
32. Rekhtman N, Tafe LJ, Chaft JE, Wang L, Arcila ME, Co–lanta A, et al. Distinct profile of driver mutations and clinical features in immunomarker-defined subsets of pulmonary large-cell carcinoma. Mod Pathol. 2013;26(4):511-22.
33. Harms A, Endris V, Winter H, Kriegsmann M, Stenzinger A, Schirmacher P, et al. Molecular dissection of large cell carcinomas of the lung with null immunophenotype. Pathology. 2018;50(5):530-535. 
34. Pelosi G, Fabbri A, Papotti M, Rossi G, Cavazza A, Righi L, et al. Dissecting Pulmonary Large-Cell Carcinoma by Targe–ted Next Generation Sequencing of Several Cancer Genes Pushes Genotypic-Phenotypic Correlations to Emerge. J Thorac Oncol. 2015;10(11):1560-1569.
35. Li D, Huang Y, Cai L, Wu M, Bao H, Xu Y, et al. Genomic landscape of metastatic lung adenocarcinomas from large-scale clinical sequencing. Neoplasia. 2021;23(12):1204-1212. 
36. Yousefi M, Andrejka L, Szamecz M, Winslow MM, Petrov DA, Boross G. Fully accessible fitness landscape of oncogene-negative lung adenocarcinoma. Proc Natl Acad Sci U S A. 2023;120(38):e2303224120. 
37. Tan AC, Tan DSW. Targeted Therapies for Lung Cancer Patients With Oncogenic Driver Molecular Alterations. J Clin Oncol.2022;40(6):611-625. 
38. Dolly SO, Collins DC, Sundar R, Popat S, Yap TA. Advances in the Development of Molecularly Targeted Agents in Non-Small-Cell Lung Cancer. Drugs. 2017;77(8):813-827. 
39. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12(18):5268-5272. 
40. Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, et al. Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Lung Cancers. Clin Cancer Res. 2019;25(3):1063-1069. 
41. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121-34. 
42. Bironzo P, Di Maio M. A review of guidelines for lung cancer. J Thorac Dis. 2018;10:S1556-S1563. 
43. Yang X, Zhong J, Yu Z. Genetic and treatment profiles of patients with concurrent Epidermal Growth Factor Receptor (EGFR) and Anaplastic Lymphoma Kinase (ALK) mutations. BMC Cancer. 2021;21:1107. 
44. Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nature Reviews Cancer. 2019;19:495-509. 
45. Gini B, Thomas N, Blakely CM. Impact of concurrent geno–mic alterations in epidermal growth factor receptor (EGFR)-mutated lung cancer. J Thorac Dis. 2020;12:2883e2895.
46. Lu RL, Hu CP, Yang HP, et al. Biological characteristics and epidermal growth factor receptor tyrosine kinase inhibitors efficacy of EGFR mutation and its subtypes in lung adenocarcinoma. Pathol Oncol Res. 2014;20:445e451.
47. Yang H, Liang SQ, Schmid RA, Peng RW. New Horizons in KRAS-Mutant Lung Cancer: Dawn After Darkness. Front Oncol. 2019;9:953.
48. West HJ, McCleland M, Cappuzzo F, Reck M, Mok TS, Jotte RM, et al. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. J Immunother Cancer. 2022;10(2):e003027.
49. Laffert M, Warth A, Penzel R, Schirmacher P, Jonigk D, Kreipe H, et al. Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC): results of a multi-centre ALK-testing. Lung Cancer. 2013;81(2):200-206.
50. Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009. 
51. Du X, Shao Y, Qin HF, Tai YH, Gao HJ. ALK-rearrangement in non-small-cell lung cancer (NSCLC). Thorac Cancer. 2018;9(4):423-430.
52. Rothschild SI, Gautschi O. Crizotinib in the treatment of non-small-cell lung cancer. Clin. Lung Cancer. 2013;14:473-480.
53. Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol. 2022;19(8):499-514. 
54. Morris TA, Khoo C, Solomon BJ. Targeting ROS1 Rearrangements in Non-small Cell Lung Cancer: Crizotinib and Newer Generation Tyrosine Kinase Inhibitors. Drugs. 2019;79(12):1277-1286.
55. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat. Rev. Cancer. 2017;17:637-658.
56. Nguyen-Ngoc T, Bouchaab H, Adjei AA, Peters S. BRAF Alterations as Therapeutic Targets in Non-Small-Cell Lung Cancer. J Thorac Oncol. 2015;10:1396-403. 
57. Sulaieva O, Chernenko O, Chereshneva Y, Tsomartova D, Larin O. Thyroid stimulating hormone levels and BRAFV600E mutation contribute to pathophysiology of papillary thyroid carcinoma: Relation to outcomes? Pathophysiology. 2019;26(2):129-135.
58. Yan N, Guo S, Zhang H, Zhang Z, Shen S, Li X. BRAF-Mutated Non-Small Cell Lung Cancer: Current Treatment Status and Future Perspective. Front Oncol. 2022;12:863043. 
59. Ross JS, Wang K, Chmielecki J, Gay L, Johnson A, Chudnovsky J, et al. The Distribution of BRAF Gene Fusions in Solid Tumors and Response to Targeted Therapy. Int J Cancer. 2016;138:881-890. 
60. Li S, Li L, Zhu Y, Huang C, Qin Y, Liu H, et al. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. Br J Cancer. 2014.110(11):2812-2820.
61. Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci. 2019;56:533-566.
62. Bittoni M, Yang JC, Shih JY, Peled N, Smit EF, Camidge DR, et al. Real-world insights into patients with advanced NSCLC and MET alterations. Lung Cancer. 2021;159:96-106. 
63. Giménez-Capitán A, Sánchez-Herrero E, Robado de Lope L, Aguilar-Hernández A, Sullivan I, Calvo V, et al. Detecting ALK, ROS1, and RET fusions and the METΔex14 splicing variant in liquid biopsies of non-small-cell lung cancer patients using RNA-based techniques. Mol Oncol. 2023;17(9):1884-1897. 
64. Wang Y, Xu Y, Wang X, Sun C, Guo Y, Shao G, et al. RET fusion in advanced non-small-cell lung cancer and response to cabozantinib: A case report. Medicine (Baltimore). 2019;98(3):e14120. 
65. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.
66. Kim EK, Kim KA, Lee CY, Shim HS. The frequency and cli–nical impact of HER2 alterations in lung adenocarcinoma. PLoS One. 2017;12(2):e0171280. 
67. Gambarotta G, Fregnan F, Gnavi S, Perroteau I. Neuregulin 1 Role in Schwann Cell Regulation and Potential Applications to Promote Peripheral Nerve Regeneration. In: International Review of Neurobiology. Academic Press. 2013;108:223-256.
68. Laskin J, Liu SV, Tolba K, Heining C, Schlenk RF, Cheema P, et al. NRG1 fusion-driven tumors: biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann Oncol. 2020;31(12):1693-1703. 
69. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin Cancer Res. 2016;22(1):259-267. 
70. Zhou Z, Liu Z, Ou Q, Wu X, Wang X, Shao Y, Liu H, Yang Y. Targeting FGFR in non-small cell lung cancer: implications from the landscape of clinically actionable aberrations of FGFR kinases. Cancer Biol Med. 2021;18(2):490-501. 
71. Rammal H, Saby C, Magnien K, Van-Gulick L, Garnotel R, Buache E, et al. Discoidin Domain Receptors: Potential Actors and Targets in Cancer. Front Pharmacol. 2016;7:55. 
72. Fathi Z, Mousavi SAJ, Roudi R, Ghazi F. Distribution of KRAS, DDR2, and TP53 gene mutations in lung cancer: An analysis of Iranian patients. PLoS One. 2018;13(7):e0200633. 
73. Cai R, Zhu H, Liu Y, Sha H, Peng W, Yin R, et al. To be, or not to be: the dilemma of immunotherapy for non-small cell lung cancer harboring various driver mutations. J Cancer Res Clin Oncol. 2023;149(12):10027-10040. 
74. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Annals of Oncology. 2020;11:1491-1505. 
75. Pascual J, Attard G, Bidard FC, Curigliano G, De Mattos-Arruda L, Diehn M, et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2022;33(8):750-768. 

Вернуться к номеру